ASI

References

Load basic packages
import pandas as pd
import numpy as np
import os
import gc
import copy
from pathlib import Path
from datetime import datetime, timedelta, time, date
#this package is to download equity price data from yahoo finance
#the source code of this package can be found here: https://github.com/ranaroussi/yfinance/blob/main
import yfinance as yf
pd.options.display.max_rows = 100
pd.options.display.max_columns = 100

import warnings
warnings.filterwarnings("ignore")

import pytorch_lightning as pl
random_seed=1234
pl.seed_everything(random_seed)
Global seed set to 1234





1234
#S&P 500 (^GSPC),  Dow Jones Industrial Average (^DJI), NASDAQ Composite (^IXIC)
#Russell 2000 (^RUT), Crude Oil Nov 21 (CL=F), Gold Dec 21 (GC=F)
#Treasury Yield 10 Years (^TNX)

#benchmark_tickers = ['^GSPC', '^DJI', '^IXIC', '^RUT',  'CL=F', 'GC=F', '^TNX']

benchmark_tickers = ['^GSPC']
tickers = benchmark_tickers + ['GSK', 'NVO', 'AROC', 'RETA']
#https://github.com/ranaroussi/yfinance/blob/main/yfinance/base.py
#     def history(self, period="1mo", interval="1d",
#                 start=None, end=None, prepost=False, actions=True,
#                 auto_adjust=True, back_adjust=False,
#                 proxy=None, rounding=False, tz=None, timeout=None, **kwargs):

dfs = {}

for ticker in tickers:
    cur_data = yf.Ticker(ticker)
    hist = cur_data.history(period="max", start='2000-01-01')
    print(datetime.now(), ticker, hist.shape, hist.index.min(), hist.index.max())
    dfs[ticker] = hist
2022-09-10 21:41:25.263501 ^GSPC (5710, 7) 1999-12-31 00:00:00 2022-09-09 00:00:00
2022-09-10 21:41:25.678381 GSK (5710, 7) 1999-12-31 00:00:00 2022-09-09 00:00:00
2022-09-10 21:41:26.077133 NVO (5710, 7) 1999-12-31 00:00:00 2022-09-09 00:00:00
2022-09-10 21:41:26.349350 AROC (3791, 7) 2007-08-21 00:00:00 2022-09-09 00:00:00
2022-09-10 21:41:26.597204 RETA (1584, 7) 2016-05-26 00:00:00 2022-09-09 00:00:00
ticker = 'GSK'
dfs[ticker].tail(5)
Open High Low Close Volume Dividends Stock Splits
Date
2022-09-02 31.600000 31.969999 31.469999 31.850000 8152600 0.0 0.0
2022-09-06 31.650000 31.760000 31.370001 31.469999 5613900 0.0 0.0
2022-09-07 31.209999 31.590000 31.160000 31.490000 4822000 0.0 0.0
2022-09-08 30.910000 31.540001 30.830000 31.510000 6620900 0.0 0.0
2022-09-09 31.950001 31.969999 31.730000 31.889999 3556800 0.0 0.0
Define ASI calculation function
def ASI(OPEN,CLOSE,HIGH,LOW,M1=26,M2=10):            #振动升降指标
    LC=REF(CLOSE,1);      AA=ABS(HIGH-LC);     BB=ABS(LOW-LC);
    CC=ABS(HIGH-REF(LOW,1));   DD=ABS(LC-REF(OPEN,1));
    R=IF( (AA>BB) & (AA>CC),AA+BB/2+DD/4,IF( (BB>CC) & (BB>AA),BB+AA/2+DD/4,CC+DD/4));
    X=(CLOSE-LC+(CLOSE-OPEN)/2+LC-REF(OPEN,1));
    SI=16*X/R*MAX(AA,BB);   ASI=SUM(SI,M1);   ASIT=MA(ASI,M2);
    return ASI,ASIT  

#https://github.com/mpquant/MyTT/blob/ea4f14857ecc46a3739a75ce2e6974b9057a6102/MyTT.py

def cal_asi(
    ohlc: pd.DataFrame, slow_period: int = 26, fast_period: int = 10
) -> pd.DataFrame:
    
        
    ohlc = ohlc.copy(deep=True)    
    ohlc.columns =  [c.lower() for c in ohlc.columns]
    
    
    lc = ohlc['close'].shift(1).values
    lo = ohlc['open'].shift(1).values
    lh = ohlc['high'].shift(1).values
    ll = ohlc['low'].shift(1).values
    
    h = ohlc['high'].values
    l = ohlc['low'].values
    o = ohlc['open'].values
    c = ohlc['close'].values
    
    
    aa = np.abs(h - lc)
    bb = np.abs(l - lc)
    cc = np.abs(h - ll)
    dd = np.abs(lc - lo)
    r = np.where((aa>bb) & (aa>cc), aa+bb/2+dd/4, np.where((bb>cc) & (bb>aa), bb+aa/2+dd/4, cc+dd/4))
    
    x=c-lc+(c-o)/2+lc-lo
    
    si=16*x/r*np.maximum(aa,bb)
    asi=pd.Series(si).rolling(slow_period).sum().values if slow_period>0 else pd.Series(si).cumsum().values  
    asit=pd.Series(asi).rolling(fast_period).mean().values  
       
    return pd.DataFrame(data={'ASI': asi, 'ASIT': asit}, index=ohlc.index)  

Calculate ASI
df = dfs[ticker][['Open', 'High', 'Low', 'Close', 'Volume']]
df = df.round(2)
cal_asi
<function __main__.cal_asi(ohlc: pandas.core.frame.DataFrame, slow_period: int = 26, fast_period: int = 10) -> pandas.core.frame.DataFrame>
# df_ta = cal_do(df, slow_period = 20, fast_period = 7)
df_ta = cal_asi(df, slow_period = 26, fast_period = 10)
df = df.merge(df_ta, left_index = True, right_index = True, how='inner' )

del df_ta
gc.collect()
122
display(df.head(5))
display(df.tail(5))
Open High Low Close Volume ASI ASIT
Date
1999-12-31 19.60 19.67 19.52 19.56 139400 NaN NaN
2000-01-03 19.58 19.71 19.25 19.45 556100 NaN NaN
2000-01-04 19.45 19.45 18.90 18.95 367200 NaN NaN
2000-01-05 19.21 19.58 19.08 19.58 481700 NaN NaN
2000-01-06 19.38 19.43 18.90 19.30 853800 NaN NaN
Open High Low Close Volume ASI ASIT
Date
2022-09-02 31.60 31.97 31.47 31.85 8152600 -183.111913 -147.826165
2022-09-06 31.65 31.76 31.37 31.47 5613900 -175.636523 -150.434876
2022-09-07 31.21 31.59 31.16 31.49 4822000 -162.394891 -152.071589
2022-09-08 30.91 31.54 30.83 31.51 6620900 -141.448991 -147.766271
2022-09-09 31.95 31.97 31.73 31.89 3556800 -124.366614 -147.613592
df[['ASI', 'ASIT']].hist(bins=50)
array([[<AxesSubplot:title={'center':'ASI'}>,
        <AxesSubplot:title={'center':'ASIT'}>]], dtype=object)

png

#https://github.com/matplotlib/mplfinance
#this package help visualize financial data
import mplfinance as mpf
import matplotlib.colors as mcolors

# all_colors = list(mcolors.CSS4_COLORS.keys())#"CSS Colors"
# all_colors = list(mcolors.TABLEAU_COLORS.keys()) # "Tableau Palette",
# all_colors = list(mcolors.BASE_COLORS.keys()) #"Base Colors",
all_colors = ['dodgerblue', 'firebrick','limegreen','skyblue','lightgreen',  'navy','yellow','plum',  'yellowgreen']
#https://github.com/matplotlib/mplfinance/issues/181#issuecomment-667252575
#list of colors: https://matplotlib.org/stable/gallery/color/named_colors.html
#https://github.com/matplotlib/mplfinance/blob/master/examples/styles.ipynb

def make_3panels2(main_data,  mid_panel=None, chart_type='candle', names=None, figratio=(14,9)):

    style = mpf.make_mpf_style(base_mpf_style='yahoo',  #charles
                               base_mpl_style = 'seaborn-whitegrid',
#                                marketcolors=mpf.make_marketcolors(up="r", down="#0000CC",inherit=True),
                               gridcolor="whitesmoke", 
                               gridstyle="--", #or None, or - for solid
                               gridaxis="both", 
                               edgecolor = 'whitesmoke',
                               facecolor = 'white', #background color within the graph edge
                               figcolor = 'white', #background color outside of the graph edge
                               y_on_right = False,
                               rc =  {'legend.fontsize': 'small',#or number
                                      #'figure.figsize': (14, 9),
                                     'axes.labelsize': 'small',
                                     'axes.titlesize':'small',
                                     'xtick.labelsize':'small',#'x-small', 'small','medium','large'
                                     'ytick.labelsize':'small'
                                     }, 
                              )   

    if (chart_type is None) or (chart_type not in ['ohlc', 'line', 'candle', 'hollow_and_filled']):
        chart_type = 'candle'
    len_dict = {'candle':2, 'ohlc':3, 'line':1, 'hollow_and_filled':2}    
        
    kwargs = dict(type=chart_type, figratio=figratio, volume=True, volume_panel=2, 
                  panel_ratios=(4,2, 2), tight_layout=True, style=style, returnfig=True)
    
    if names is None:
        names = {'main_title': '', 'sub_tile': ''}
    
    added_plots = { 
    }

        
    
    fb_bbands = []
    if mid_panel is not None:
        i = 0
        for name_, data_ in mid_panel.iteritems():
            added_plots[name_] = mpf.make_addplot(data_, panel=1, width=1, color=all_colors[i],secondary_y=False)
            i = i + 1
        fb_bbands2_ = dict(y1=-50*np.ones(mid_panel.shape[0]),
                      y2=50*np.ones(mid_panel.shape[0]),color="lightskyblue",alpha=0.1,interpolate=True)
        fb_bbands2_['panel'] = 1
        fb_bbands.append(fb_bbands2_)


    fig, axes = mpf.plot(main_data,  **kwargs,
                         addplot=list(added_plots.values()), 
                         fill_between = fb_bbands,
                        )
    # add a new suptitle
    fig.suptitle(names['main_title'], y=1.05, fontsize=12, x=0.1285)

#     axes[0].legend([None]*4)
#     handles = axes[0].get_legend().legendHandles
#     axes[0].legend(handles=handles[2:],labels=['RS_EMA', 'EMA'])
#     axes[0].set_title(names['sub_tile'], fontsize=10, style='italic',  loc='left')
    

#     axes[0].set_ylabel(names['y_tiles'][0])
#     axes[2].set_ylabel(names['y_tiles'][1])
    return fig, axes
   
start = -100
end = df.shape[0]


names = {'main_title': f'{ticker}', 
         'sub_tile': 'ASI'}


aa_, bb_ = make_3panels2(df.iloc[start:end][['Open', 'High', 'Low', 'Close', 'Volume']], 
            df.iloc[start:end][['ASI', 'ASIT']],
             chart_type='hollow_and_filled',names = names)

png