follow Part I of tsfresh
introduction
import pandas as pd
import numpy as np
import os
pd.options.display.max_rows = 999
pd.options.display.max_columns = 999
df = pd.read_csv('data/^GSPC.csv')
df.head()
Date | Open | High | Low | Close | Adj Close | Volume | |
---|---|---|---|---|---|---|---|
0 | 2007-01-03 | 1418.030029 | 1429.420044 | 1407.859985 | 1416.599976 | 1416.599976 | 3429160000 |
1 | 2007-01-04 | 1416.599976 | 1421.839966 | 1408.430054 | 1418.339966 | 1418.339966 | 3004460000 |
2 | 2007-01-05 | 1418.339966 | 1418.339966 | 1405.750000 | 1409.709961 | 1409.709961 | 2919400000 |
3 | 2007-01-08 | 1409.260010 | 1414.979980 | 1403.969971 | 1412.839966 | 1412.839966 | 2763340000 |
4 | 2007-01-09 | 1412.839966 | 1415.609985 | 1405.420044 | 1412.109985 | 1412.109985 | 3038380000 |
df.columns
Index(['Date', 'Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'], dtype='object')
#keep only Date and Close
df = df[['Date', 'Close']].copy(deep=True)
#create a dummy id column
df['id']=1
df.head()
Date | Close | id | |
---|---|---|---|
0 | 2007-01-03 | 1416.599976 | 1 |
1 | 2007-01-04 | 1418.339966 | 1 |
2 | 2007-01-05 | 1409.709961 | 1 |
3 | 2007-01-08 | 1412.839966 | 1 |
4 | 2007-01-09 | 1412.109985 | 1 |
from tsfresh.utilities.dataframe_functions import roll_time_series
from tsfresh import extract_features
df_rolled = roll_time_series(df, column_id="id", column_sort="Date", max_timeshift=6, min_timeshift=6, disable_progressbar=True)
df_rolled.head(7)
Date | Close | id | |
---|---|---|---|
0 | 2007-01-03 | 1416.599976 | (1, 2007-01-11) |
1 | 2007-01-04 | 1418.339966 | (1, 2007-01-11) |
2 | 2007-01-05 | 1409.709961 | (1, 2007-01-11) |
3 | 2007-01-08 | 1412.839966 | (1, 2007-01-11) |
4 | 2007-01-09 | 1412.109985 | (1, 2007-01-11) |
5 | 2007-01-10 | 1414.849976 | (1, 2007-01-11) |
6 | 2007-01-11 | 1423.819946 | (1, 2007-01-11) |
print(df.shape, df_rolled.shape)
(3301, 3) (23065, 3)
df_rolled[df_rolled['Date']=='2007-01-03']
Date | Close | id | |
---|---|---|---|
0 | 2007-01-03 | 1416.599976 | (1, 2007-01-11) |
df_rolled.tail(3)
Date | Close | id | |
---|---|---|---|
23062 | 2020-02-10 | 3352.090088 | (1, 2020-02-12) |
23063 | 2020-02-11 | 3357.750000 | (1, 2020-02-12) |
23064 | 2020-02-12 | 3379.449951 | (1, 2020-02-12) |
df_rolled[df_rolled['id']==df_rolled['id'].values[0]]
Date | Close | id | |
---|---|---|---|
0 | 2007-01-03 | 1416.599976 | (1, 2007-01-11) |
1 | 2007-01-04 | 1418.339966 | (1, 2007-01-11) |
2 | 2007-01-05 | 1409.709961 | (1, 2007-01-11) |
3 | 2007-01-08 | 1412.839966 | (1, 2007-01-11) |
4 | 2007-01-09 | 1412.109985 | (1, 2007-01-11) |
5 | 2007-01-10 | 1414.849976 | (1, 2007-01-11) |
6 | 2007-01-11 | 1423.819946 | (1, 2007-01-11) |
df_rolled[df_rolled['Date']=='2007-01-10']
Date | Close | id | |
---|---|---|---|
5 | 2007-01-10 | 1414.849976 | (1, 2007-01-11) |
11 | 2007-01-10 | 1414.849976 | (1, 2007-01-12) |
17 | 2007-01-10 | 1414.849976 | (1, 2007-01-16) |
23 | 2007-01-10 | 1414.849976 | (1, 2007-01-17) |
29 | 2007-01-10 | 1414.849976 | (1, 2007-01-18) |
35 | 2007-01-10 | 1414.849976 | (1, 2007-01-19) |
df_features = extract_features(df_rolled, column_id="id", column_sort="Date")
Feature Extraction: 100%|██████████████████████████████████████████████████████████████| 20/20 [00:39<00:00, 1.98s/it]
print(df_features.shape)
(3295, 779)
df_features.head()
Close__variance_larger_than_standard_deviation | Close__has_duplicate_max | Close__has_duplicate_min | Close__has_duplicate | Close__sum_values | Close__abs_energy | Close__mean_abs_change | Close__mean_change | Close__mean_second_derivative_central | Close__median | Close__mean | Close__length | Close__standard_deviation | Close__variation_coefficient | Close__variance | Close__skewness | Close__kurtosis | Close__absolute_sum_of_changes | Close__longest_strike_below_mean | Close__longest_strike_above_mean | Close__count_above_mean | Close__count_below_mean | Close__last_location_of_maximum | Close__first_location_of_maximum | Close__last_location_of_minimum | Close__first_location_of_minimum | Close__percentage_of_reoccurring_values_to_all_values | Close__percentage_of_reoccurring_datapoints_to_all_datapoints | Close__sum_of_reoccurring_values | Close__sum_of_reoccurring_data_points | Close__ratio_value_number_to_time_series_length | Close__sample_entropy | Close__maximum | Close__minimum | Close__benford_correlation | Close__time_reversal_asymmetry_statistic__lag_1 | Close__time_reversal_asymmetry_statistic__lag_2 | Close__time_reversal_asymmetry_statistic__lag_3 | Close__c3__lag_1 | Close__c3__lag_2 | Close__c3__lag_3 | Close__cid_ce__normalize_True | Close__cid_ce__normalize_False | Close__symmetry_looking__r_0.0 | Close__symmetry_looking__r_0.05 | Close__symmetry_looking__r_0.1 | Close__symmetry_looking__r_0.15000000000000002 | Close__symmetry_looking__r_0.2 | Close__symmetry_looking__r_0.25 | Close__symmetry_looking__r_0.30000000000000004 | Close__symmetry_looking__r_0.35000000000000003 | Close__symmetry_looking__r_0.4 | Close__symmetry_looking__r_0.45 | Close__symmetry_looking__r_0.5 | Close__symmetry_looking__r_0.55 | Close__symmetry_looking__r_0.6000000000000001 | Close__symmetry_looking__r_0.65 | Close__symmetry_looking__r_0.7000000000000001 | Close__symmetry_looking__r_0.75 | Close__symmetry_looking__r_0.8 | Close__symmetry_looking__r_0.8500000000000001 | Close__symmetry_looking__r_0.9 | Close__symmetry_looking__r_0.9500000000000001 | Close__large_standard_deviation__r_0.05 | Close__large_standard_deviation__r_0.1 | Close__large_standard_deviation__r_0.15000000000000002 | Close__large_standard_deviation__r_0.2 | Close__large_standard_deviation__r_0.25 | Close__large_standard_deviation__r_0.30000000000000004 | Close__large_standard_deviation__r_0.35000000000000003 | Close__large_standard_deviation__r_0.4 | Close__large_standard_deviation__r_0.45 | Close__large_standard_deviation__r_0.5 | Close__large_standard_deviation__r_0.55 | Close__large_standard_deviation__r_0.6000000000000001 | Close__large_standard_deviation__r_0.65 | Close__large_standard_deviation__r_0.7000000000000001 | Close__large_standard_deviation__r_0.75 | Close__large_standard_deviation__r_0.8 | Close__large_standard_deviation__r_0.8500000000000001 | Close__large_standard_deviation__r_0.9 | Close__large_standard_deviation__r_0.9500000000000001 | Close__quantile__q_0.1 | Close__quantile__q_0.2 | Close__quantile__q_0.3 | Close__quantile__q_0.4 | Close__quantile__q_0.6 | Close__quantile__q_0.7 | Close__quantile__q_0.8 | Close__quantile__q_0.9 | Close__autocorrelation__lag_0 | Close__autocorrelation__lag_1 | Close__autocorrelation__lag_2 | Close__autocorrelation__lag_3 | Close__autocorrelation__lag_4 | Close__autocorrelation__lag_5 | Close__autocorrelation__lag_6 | Close__autocorrelation__lag_7 | Close__autocorrelation__lag_8 | Close__autocorrelation__lag_9 | Close__agg_autocorrelation__f_agg_"mean"__maxlag_40 | Close__agg_autocorrelation__f_agg_"median"__maxlag_40 | Close__agg_autocorrelation__f_agg_"var"__maxlag_40 | Close__partial_autocorrelation__lag_0 | Close__partial_autocorrelation__lag_1 | Close__partial_autocorrelation__lag_2 | Close__partial_autocorrelation__lag_3 | Close__partial_autocorrelation__lag_4 | Close__partial_autocorrelation__lag_5 | Close__partial_autocorrelation__lag_6 | Close__partial_autocorrelation__lag_7 | Close__partial_autocorrelation__lag_8 | Close__partial_autocorrelation__lag_9 | Close__number_cwt_peaks__n_1 | Close__number_cwt_peaks__n_5 | Close__number_peaks__n_1 | Close__number_peaks__n_3 | Close__number_peaks__n_5 | Close__number_peaks__n_10 | Close__number_peaks__n_50 | Close__binned_entropy__max_bins_10 | Close__index_mass_quantile__q_0.1 | Close__index_mass_quantile__q_0.2 | Close__index_mass_quantile__q_0.3 | Close__index_mass_quantile__q_0.4 | Close__index_mass_quantile__q_0.6 | Close__index_mass_quantile__q_0.7 | Close__index_mass_quantile__q_0.8 | Close__index_mass_quantile__q_0.9 | Close__cwt_coefficients__coeff_0__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_7__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_7__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_7__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_7__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_8__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_8__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_8__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_8__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_9__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_9__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_9__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_9__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_10__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_10__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_10__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_10__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_11__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_11__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_11__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_11__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_12__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_12__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_12__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_12__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_13__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_13__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_13__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_13__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_14__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_14__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_14__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_14__w_20__widths_(2, 5, 10, 20) | Close__spkt_welch_density__coeff_2 | Close__spkt_welch_density__coeff_5 | Close__spkt_welch_density__coeff_8 | Close__ar_coefficient__coeff_0__k_10 | Close__ar_coefficient__coeff_1__k_10 | Close__ar_coefficient__coeff_2__k_10 | Close__ar_coefficient__coeff_3__k_10 | Close__ar_coefficient__coeff_4__k_10 | Close__ar_coefficient__coeff_5__k_10 | Close__ar_coefficient__coeff_6__k_10 | Close__ar_coefficient__coeff_7__k_10 | Close__ar_coefficient__coeff_8__k_10 | Close__ar_coefficient__coeff_9__k_10 | Close__ar_coefficient__coeff_10__k_10 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.8 | Close__fft_coefficient__attr_"real"__coeff_0 | Close__fft_coefficient__attr_"real"__coeff_1 | Close__fft_coefficient__attr_"real"__coeff_2 | Close__fft_coefficient__attr_"real"__coeff_3 | Close__fft_coefficient__attr_"real"__coeff_4 | Close__fft_coefficient__attr_"real"__coeff_5 | Close__fft_coefficient__attr_"real"__coeff_6 | Close__fft_coefficient__attr_"real"__coeff_7 | Close__fft_coefficient__attr_"real"__coeff_8 | Close__fft_coefficient__attr_"real"__coeff_9 | Close__fft_coefficient__attr_"real"__coeff_10 | Close__fft_coefficient__attr_"real"__coeff_11 | Close__fft_coefficient__attr_"real"__coeff_12 | Close__fft_coefficient__attr_"real"__coeff_13 | Close__fft_coefficient__attr_"real"__coeff_14 | Close__fft_coefficient__attr_"real"__coeff_15 | Close__fft_coefficient__attr_"real"__coeff_16 | Close__fft_coefficient__attr_"real"__coeff_17 | Close__fft_coefficient__attr_"real"__coeff_18 | Close__fft_coefficient__attr_"real"__coeff_19 | Close__fft_coefficient__attr_"real"__coeff_20 | Close__fft_coefficient__attr_"real"__coeff_21 | Close__fft_coefficient__attr_"real"__coeff_22 | Close__fft_coefficient__attr_"real"__coeff_23 | Close__fft_coefficient__attr_"real"__coeff_24 | Close__fft_coefficient__attr_"real"__coeff_25 | Close__fft_coefficient__attr_"real"__coeff_26 | Close__fft_coefficient__attr_"real"__coeff_27 | Close__fft_coefficient__attr_"real"__coeff_28 | Close__fft_coefficient__attr_"real"__coeff_29 | Close__fft_coefficient__attr_"real"__coeff_30 | Close__fft_coefficient__attr_"real"__coeff_31 | Close__fft_coefficient__attr_"real"__coeff_32 | Close__fft_coefficient__attr_"real"__coeff_33 | Close__fft_coefficient__attr_"real"__coeff_34 | Close__fft_coefficient__attr_"real"__coeff_35 | Close__fft_coefficient__attr_"real"__coeff_36 | Close__fft_coefficient__attr_"real"__coeff_37 | Close__fft_coefficient__attr_"real"__coeff_38 | Close__fft_coefficient__attr_"real"__coeff_39 | Close__fft_coefficient__attr_"real"__coeff_40 | Close__fft_coefficient__attr_"real"__coeff_41 | Close__fft_coefficient__attr_"real"__coeff_42 | Close__fft_coefficient__attr_"real"__coeff_43 | Close__fft_coefficient__attr_"real"__coeff_44 | Close__fft_coefficient__attr_"real"__coeff_45 | Close__fft_coefficient__attr_"real"__coeff_46 | Close__fft_coefficient__attr_"real"__coeff_47 | Close__fft_coefficient__attr_"real"__coeff_48 | Close__fft_coefficient__attr_"real"__coeff_49 | Close__fft_coefficient__attr_"real"__coeff_50 | Close__fft_coefficient__attr_"real"__coeff_51 | Close__fft_coefficient__attr_"real"__coeff_52 | Close__fft_coefficient__attr_"real"__coeff_53 | Close__fft_coefficient__attr_"real"__coeff_54 | Close__fft_coefficient__attr_"real"__coeff_55 | Close__fft_coefficient__attr_"real"__coeff_56 | Close__fft_coefficient__attr_"real"__coeff_57 | Close__fft_coefficient__attr_"real"__coeff_58 | Close__fft_coefficient__attr_"real"__coeff_59 | Close__fft_coefficient__attr_"real"__coeff_60 | Close__fft_coefficient__attr_"real"__coeff_61 | Close__fft_coefficient__attr_"real"__coeff_62 | Close__fft_coefficient__attr_"real"__coeff_63 | Close__fft_coefficient__attr_"real"__coeff_64 | Close__fft_coefficient__attr_"real"__coeff_65 | Close__fft_coefficient__attr_"real"__coeff_66 | Close__fft_coefficient__attr_"real"__coeff_67 | Close__fft_coefficient__attr_"real"__coeff_68 | Close__fft_coefficient__attr_"real"__coeff_69 | Close__fft_coefficient__attr_"real"__coeff_70 | Close__fft_coefficient__attr_"real"__coeff_71 | Close__fft_coefficient__attr_"real"__coeff_72 | Close__fft_coefficient__attr_"real"__coeff_73 | Close__fft_coefficient__attr_"real"__coeff_74 | Close__fft_coefficient__attr_"real"__coeff_75 | Close__fft_coefficient__attr_"real"__coeff_76 | Close__fft_coefficient__attr_"real"__coeff_77 | Close__fft_coefficient__attr_"real"__coeff_78 | Close__fft_coefficient__attr_"real"__coeff_79 | Close__fft_coefficient__attr_"real"__coeff_80 | Close__fft_coefficient__attr_"real"__coeff_81 | Close__fft_coefficient__attr_"real"__coeff_82 | Close__fft_coefficient__attr_"real"__coeff_83 | Close__fft_coefficient__attr_"real"__coeff_84 | Close__fft_coefficient__attr_"real"__coeff_85 | Close__fft_coefficient__attr_"real"__coeff_86 | Close__fft_coefficient__attr_"real"__coeff_87 | Close__fft_coefficient__attr_"real"__coeff_88 | Close__fft_coefficient__attr_"real"__coeff_89 | Close__fft_coefficient__attr_"real"__coeff_90 | Close__fft_coefficient__attr_"real"__coeff_91 | Close__fft_coefficient__attr_"real"__coeff_92 | Close__fft_coefficient__attr_"real"__coeff_93 | Close__fft_coefficient__attr_"real"__coeff_94 | Close__fft_coefficient__attr_"real"__coeff_95 | Close__fft_coefficient__attr_"real"__coeff_96 | Close__fft_coefficient__attr_"real"__coeff_97 | Close__fft_coefficient__attr_"real"__coeff_98 | Close__fft_coefficient__attr_"real"__coeff_99 | Close__fft_coefficient__attr_"imag"__coeff_0 | Close__fft_coefficient__attr_"imag"__coeff_1 | Close__fft_coefficient__attr_"imag"__coeff_2 | Close__fft_coefficient__attr_"imag"__coeff_3 | Close__fft_coefficient__attr_"imag"__coeff_4 | Close__fft_coefficient__attr_"imag"__coeff_5 | Close__fft_coefficient__attr_"imag"__coeff_6 | Close__fft_coefficient__attr_"imag"__coeff_7 | Close__fft_coefficient__attr_"imag"__coeff_8 | Close__fft_coefficient__attr_"imag"__coeff_9 | Close__fft_coefficient__attr_"imag"__coeff_10 | Close__fft_coefficient__attr_"imag"__coeff_11 | Close__fft_coefficient__attr_"imag"__coeff_12 | Close__fft_coefficient__attr_"imag"__coeff_13 | Close__fft_coefficient__attr_"imag"__coeff_14 | Close__fft_coefficient__attr_"imag"__coeff_15 | Close__fft_coefficient__attr_"imag"__coeff_16 | Close__fft_coefficient__attr_"imag"__coeff_17 | Close__fft_coefficient__attr_"imag"__coeff_18 | Close__fft_coefficient__attr_"imag"__coeff_19 | Close__fft_coefficient__attr_"imag"__coeff_20 | Close__fft_coefficient__attr_"imag"__coeff_21 | Close__fft_coefficient__attr_"imag"__coeff_22 | Close__fft_coefficient__attr_"imag"__coeff_23 | Close__fft_coefficient__attr_"imag"__coeff_24 | Close__fft_coefficient__attr_"imag"__coeff_25 | Close__fft_coefficient__attr_"imag"__coeff_26 | Close__fft_coefficient__attr_"imag"__coeff_27 | Close__fft_coefficient__attr_"imag"__coeff_28 | Close__fft_coefficient__attr_"imag"__coeff_29 | Close__fft_coefficient__attr_"imag"__coeff_30 | Close__fft_coefficient__attr_"imag"__coeff_31 | Close__fft_coefficient__attr_"imag"__coeff_32 | Close__fft_coefficient__attr_"imag"__coeff_33 | Close__fft_coefficient__attr_"imag"__coeff_34 | Close__fft_coefficient__attr_"imag"__coeff_35 | Close__fft_coefficient__attr_"imag"__coeff_36 | Close__fft_coefficient__attr_"imag"__coeff_37 | Close__fft_coefficient__attr_"imag"__coeff_38 | Close__fft_coefficient__attr_"imag"__coeff_39 | Close__fft_coefficient__attr_"imag"__coeff_40 | Close__fft_coefficient__attr_"imag"__coeff_41 | Close__fft_coefficient__attr_"imag"__coeff_42 | Close__fft_coefficient__attr_"imag"__coeff_43 | Close__fft_coefficient__attr_"imag"__coeff_44 | Close__fft_coefficient__attr_"imag"__coeff_45 | Close__fft_coefficient__attr_"imag"__coeff_46 | Close__fft_coefficient__attr_"imag"__coeff_47 | Close__fft_coefficient__attr_"imag"__coeff_48 | Close__fft_coefficient__attr_"imag"__coeff_49 | Close__fft_coefficient__attr_"imag"__coeff_50 | Close__fft_coefficient__attr_"imag"__coeff_51 | Close__fft_coefficient__attr_"imag"__coeff_52 | Close__fft_coefficient__attr_"imag"__coeff_53 | Close__fft_coefficient__attr_"imag"__coeff_54 | Close__fft_coefficient__attr_"imag"__coeff_55 | Close__fft_coefficient__attr_"imag"__coeff_56 | Close__fft_coefficient__attr_"imag"__coeff_57 | Close__fft_coefficient__attr_"imag"__coeff_58 | Close__fft_coefficient__attr_"imag"__coeff_59 | Close__fft_coefficient__attr_"imag"__coeff_60 | Close__fft_coefficient__attr_"imag"__coeff_61 | Close__fft_coefficient__attr_"imag"__coeff_62 | Close__fft_coefficient__attr_"imag"__coeff_63 | Close__fft_coefficient__attr_"imag"__coeff_64 | Close__fft_coefficient__attr_"imag"__coeff_65 | Close__fft_coefficient__attr_"imag"__coeff_66 | Close__fft_coefficient__attr_"imag"__coeff_67 | Close__fft_coefficient__attr_"imag"__coeff_68 | Close__fft_coefficient__attr_"imag"__coeff_69 | Close__fft_coefficient__attr_"imag"__coeff_70 | Close__fft_coefficient__attr_"imag"__coeff_71 | Close__fft_coefficient__attr_"imag"__coeff_72 | Close__fft_coefficient__attr_"imag"__coeff_73 | Close__fft_coefficient__attr_"imag"__coeff_74 | Close__fft_coefficient__attr_"imag"__coeff_75 | Close__fft_coefficient__attr_"imag"__coeff_76 | Close__fft_coefficient__attr_"imag"__coeff_77 | Close__fft_coefficient__attr_"imag"__coeff_78 | Close__fft_coefficient__attr_"imag"__coeff_79 | Close__fft_coefficient__attr_"imag"__coeff_80 | Close__fft_coefficient__attr_"imag"__coeff_81 | Close__fft_coefficient__attr_"imag"__coeff_82 | Close__fft_coefficient__attr_"imag"__coeff_83 | Close__fft_coefficient__attr_"imag"__coeff_84 | Close__fft_coefficient__attr_"imag"__coeff_85 | Close__fft_coefficient__attr_"imag"__coeff_86 | Close__fft_coefficient__attr_"imag"__coeff_87 | Close__fft_coefficient__attr_"imag"__coeff_88 | Close__fft_coefficient__attr_"imag"__coeff_89 | Close__fft_coefficient__attr_"imag"__coeff_90 | Close__fft_coefficient__attr_"imag"__coeff_91 | Close__fft_coefficient__attr_"imag"__coeff_92 | Close__fft_coefficient__attr_"imag"__coeff_93 | Close__fft_coefficient__attr_"imag"__coeff_94 | Close__fft_coefficient__attr_"imag"__coeff_95 | Close__fft_coefficient__attr_"imag"__coeff_96 | Close__fft_coefficient__attr_"imag"__coeff_97 | Close__fft_coefficient__attr_"imag"__coeff_98 | Close__fft_coefficient__attr_"imag"__coeff_99 | Close__fft_coefficient__attr_"abs"__coeff_0 | Close__fft_coefficient__attr_"abs"__coeff_1 | Close__fft_coefficient__attr_"abs"__coeff_2 | Close__fft_coefficient__attr_"abs"__coeff_3 | Close__fft_coefficient__attr_"abs"__coeff_4 | Close__fft_coefficient__attr_"abs"__coeff_5 | Close__fft_coefficient__attr_"abs"__coeff_6 | Close__fft_coefficient__attr_"abs"__coeff_7 | Close__fft_coefficient__attr_"abs"__coeff_8 | Close__fft_coefficient__attr_"abs"__coeff_9 | Close__fft_coefficient__attr_"abs"__coeff_10 | Close__fft_coefficient__attr_"abs"__coeff_11 | Close__fft_coefficient__attr_"abs"__coeff_12 | Close__fft_coefficient__attr_"abs"__coeff_13 | Close__fft_coefficient__attr_"abs"__coeff_14 | Close__fft_coefficient__attr_"abs"__coeff_15 | Close__fft_coefficient__attr_"abs"__coeff_16 | Close__fft_coefficient__attr_"abs"__coeff_17 | Close__fft_coefficient__attr_"abs"__coeff_18 | Close__fft_coefficient__attr_"abs"__coeff_19 | Close__fft_coefficient__attr_"abs"__coeff_20 | Close__fft_coefficient__attr_"abs"__coeff_21 | Close__fft_coefficient__attr_"abs"__coeff_22 | Close__fft_coefficient__attr_"abs"__coeff_23 | Close__fft_coefficient__attr_"abs"__coeff_24 | Close__fft_coefficient__attr_"abs"__coeff_25 | Close__fft_coefficient__attr_"abs"__coeff_26 | Close__fft_coefficient__attr_"abs"__coeff_27 | Close__fft_coefficient__attr_"abs"__coeff_28 | Close__fft_coefficient__attr_"abs"__coeff_29 | Close__fft_coefficient__attr_"abs"__coeff_30 | Close__fft_coefficient__attr_"abs"__coeff_31 | Close__fft_coefficient__attr_"abs"__coeff_32 | Close__fft_coefficient__attr_"abs"__coeff_33 | Close__fft_coefficient__attr_"abs"__coeff_34 | Close__fft_coefficient__attr_"abs"__coeff_35 | Close__fft_coefficient__attr_"abs"__coeff_36 | Close__fft_coefficient__attr_"abs"__coeff_37 | Close__fft_coefficient__attr_"abs"__coeff_38 | Close__fft_coefficient__attr_"abs"__coeff_39 | Close__fft_coefficient__attr_"abs"__coeff_40 | Close__fft_coefficient__attr_"abs"__coeff_41 | Close__fft_coefficient__attr_"abs"__coeff_42 | Close__fft_coefficient__attr_"abs"__coeff_43 | Close__fft_coefficient__attr_"abs"__coeff_44 | Close__fft_coefficient__attr_"abs"__coeff_45 | Close__fft_coefficient__attr_"abs"__coeff_46 | Close__fft_coefficient__attr_"abs"__coeff_47 | Close__fft_coefficient__attr_"abs"__coeff_48 | Close__fft_coefficient__attr_"abs"__coeff_49 | Close__fft_coefficient__attr_"abs"__coeff_50 | Close__fft_coefficient__attr_"abs"__coeff_51 | Close__fft_coefficient__attr_"abs"__coeff_52 | Close__fft_coefficient__attr_"abs"__coeff_53 | Close__fft_coefficient__attr_"abs"__coeff_54 | Close__fft_coefficient__attr_"abs"__coeff_55 | Close__fft_coefficient__attr_"abs"__coeff_56 | Close__fft_coefficient__attr_"abs"__coeff_57 | Close__fft_coefficient__attr_"abs"__coeff_58 | Close__fft_coefficient__attr_"abs"__coeff_59 | Close__fft_coefficient__attr_"abs"__coeff_60 | Close__fft_coefficient__attr_"abs"__coeff_61 | Close__fft_coefficient__attr_"abs"__coeff_62 | Close__fft_coefficient__attr_"abs"__coeff_63 | Close__fft_coefficient__attr_"abs"__coeff_64 | Close__fft_coefficient__attr_"abs"__coeff_65 | Close__fft_coefficient__attr_"abs"__coeff_66 | Close__fft_coefficient__attr_"abs"__coeff_67 | Close__fft_coefficient__attr_"abs"__coeff_68 | Close__fft_coefficient__attr_"abs"__coeff_69 | Close__fft_coefficient__attr_"abs"__coeff_70 | Close__fft_coefficient__attr_"abs"__coeff_71 | Close__fft_coefficient__attr_"abs"__coeff_72 | Close__fft_coefficient__attr_"abs"__coeff_73 | Close__fft_coefficient__attr_"abs"__coeff_74 | Close__fft_coefficient__attr_"abs"__coeff_75 | Close__fft_coefficient__attr_"abs"__coeff_76 | Close__fft_coefficient__attr_"abs"__coeff_77 | Close__fft_coefficient__attr_"abs"__coeff_78 | Close__fft_coefficient__attr_"abs"__coeff_79 | Close__fft_coefficient__attr_"abs"__coeff_80 | Close__fft_coefficient__attr_"abs"__coeff_81 | Close__fft_coefficient__attr_"abs"__coeff_82 | Close__fft_coefficient__attr_"abs"__coeff_83 | Close__fft_coefficient__attr_"abs"__coeff_84 | Close__fft_coefficient__attr_"abs"__coeff_85 | Close__fft_coefficient__attr_"abs"__coeff_86 | Close__fft_coefficient__attr_"abs"__coeff_87 | Close__fft_coefficient__attr_"abs"__coeff_88 | Close__fft_coefficient__attr_"abs"__coeff_89 | Close__fft_coefficient__attr_"abs"__coeff_90 | Close__fft_coefficient__attr_"abs"__coeff_91 | Close__fft_coefficient__attr_"abs"__coeff_92 | Close__fft_coefficient__attr_"abs"__coeff_93 | Close__fft_coefficient__attr_"abs"__coeff_94 | Close__fft_coefficient__attr_"abs"__coeff_95 | Close__fft_coefficient__attr_"abs"__coeff_96 | Close__fft_coefficient__attr_"abs"__coeff_97 | Close__fft_coefficient__attr_"abs"__coeff_98 | Close__fft_coefficient__attr_"abs"__coeff_99 | Close__fft_coefficient__attr_"angle"__coeff_0 | Close__fft_coefficient__attr_"angle"__coeff_1 | Close__fft_coefficient__attr_"angle"__coeff_2 | Close__fft_coefficient__attr_"angle"__coeff_3 | Close__fft_coefficient__attr_"angle"__coeff_4 | Close__fft_coefficient__attr_"angle"__coeff_5 | Close__fft_coefficient__attr_"angle"__coeff_6 | Close__fft_coefficient__attr_"angle"__coeff_7 | Close__fft_coefficient__attr_"angle"__coeff_8 | Close__fft_coefficient__attr_"angle"__coeff_9 | Close__fft_coefficient__attr_"angle"__coeff_10 | Close__fft_coefficient__attr_"angle"__coeff_11 | Close__fft_coefficient__attr_"angle"__coeff_12 | Close__fft_coefficient__attr_"angle"__coeff_13 | Close__fft_coefficient__attr_"angle"__coeff_14 | Close__fft_coefficient__attr_"angle"__coeff_15 | Close__fft_coefficient__attr_"angle"__coeff_16 | Close__fft_coefficient__attr_"angle"__coeff_17 | Close__fft_coefficient__attr_"angle"__coeff_18 | Close__fft_coefficient__attr_"angle"__coeff_19 | Close__fft_coefficient__attr_"angle"__coeff_20 | Close__fft_coefficient__attr_"angle"__coeff_21 | Close__fft_coefficient__attr_"angle"__coeff_22 | Close__fft_coefficient__attr_"angle"__coeff_23 | Close__fft_coefficient__attr_"angle"__coeff_24 | Close__fft_coefficient__attr_"angle"__coeff_25 | Close__fft_coefficient__attr_"angle"__coeff_26 | Close__fft_coefficient__attr_"angle"__coeff_27 | Close__fft_coefficient__attr_"angle"__coeff_28 | Close__fft_coefficient__attr_"angle"__coeff_29 | Close__fft_coefficient__attr_"angle"__coeff_30 | Close__fft_coefficient__attr_"angle"__coeff_31 | Close__fft_coefficient__attr_"angle"__coeff_32 | Close__fft_coefficient__attr_"angle"__coeff_33 | Close__fft_coefficient__attr_"angle"__coeff_34 | Close__fft_coefficient__attr_"angle"__coeff_35 | Close__fft_coefficient__attr_"angle"__coeff_36 | Close__fft_coefficient__attr_"angle"__coeff_37 | Close__fft_coefficient__attr_"angle"__coeff_38 | Close__fft_coefficient__attr_"angle"__coeff_39 | Close__fft_coefficient__attr_"angle"__coeff_40 | Close__fft_coefficient__attr_"angle"__coeff_41 | Close__fft_coefficient__attr_"angle"__coeff_42 | Close__fft_coefficient__attr_"angle"__coeff_43 | Close__fft_coefficient__attr_"angle"__coeff_44 | Close__fft_coefficient__attr_"angle"__coeff_45 | Close__fft_coefficient__attr_"angle"__coeff_46 | Close__fft_coefficient__attr_"angle"__coeff_47 | Close__fft_coefficient__attr_"angle"__coeff_48 | Close__fft_coefficient__attr_"angle"__coeff_49 | Close__fft_coefficient__attr_"angle"__coeff_50 | Close__fft_coefficient__attr_"angle"__coeff_51 | Close__fft_coefficient__attr_"angle"__coeff_52 | Close__fft_coefficient__attr_"angle"__coeff_53 | Close__fft_coefficient__attr_"angle"__coeff_54 | Close__fft_coefficient__attr_"angle"__coeff_55 | Close__fft_coefficient__attr_"angle"__coeff_56 | Close__fft_coefficient__attr_"angle"__coeff_57 | Close__fft_coefficient__attr_"angle"__coeff_58 | Close__fft_coefficient__attr_"angle"__coeff_59 | Close__fft_coefficient__attr_"angle"__coeff_60 | Close__fft_coefficient__attr_"angle"__coeff_61 | Close__fft_coefficient__attr_"angle"__coeff_62 | Close__fft_coefficient__attr_"angle"__coeff_63 | Close__fft_coefficient__attr_"angle"__coeff_64 | Close__fft_coefficient__attr_"angle"__coeff_65 | Close__fft_coefficient__attr_"angle"__coeff_66 | Close__fft_coefficient__attr_"angle"__coeff_67 | Close__fft_coefficient__attr_"angle"__coeff_68 | Close__fft_coefficient__attr_"angle"__coeff_69 | Close__fft_coefficient__attr_"angle"__coeff_70 | Close__fft_coefficient__attr_"angle"__coeff_71 | Close__fft_coefficient__attr_"angle"__coeff_72 | Close__fft_coefficient__attr_"angle"__coeff_73 | Close__fft_coefficient__attr_"angle"__coeff_74 | Close__fft_coefficient__attr_"angle"__coeff_75 | Close__fft_coefficient__attr_"angle"__coeff_76 | Close__fft_coefficient__attr_"angle"__coeff_77 | Close__fft_coefficient__attr_"angle"__coeff_78 | Close__fft_coefficient__attr_"angle"__coeff_79 | Close__fft_coefficient__attr_"angle"__coeff_80 | Close__fft_coefficient__attr_"angle"__coeff_81 | Close__fft_coefficient__attr_"angle"__coeff_82 | Close__fft_coefficient__attr_"angle"__coeff_83 | Close__fft_coefficient__attr_"angle"__coeff_84 | Close__fft_coefficient__attr_"angle"__coeff_85 | Close__fft_coefficient__attr_"angle"__coeff_86 | Close__fft_coefficient__attr_"angle"__coeff_87 | Close__fft_coefficient__attr_"angle"__coeff_88 | Close__fft_coefficient__attr_"angle"__coeff_89 | Close__fft_coefficient__attr_"angle"__coeff_90 | Close__fft_coefficient__attr_"angle"__coeff_91 | Close__fft_coefficient__attr_"angle"__coeff_92 | Close__fft_coefficient__attr_"angle"__coeff_93 | Close__fft_coefficient__attr_"angle"__coeff_94 | Close__fft_coefficient__attr_"angle"__coeff_95 | Close__fft_coefficient__attr_"angle"__coeff_96 | Close__fft_coefficient__attr_"angle"__coeff_97 | Close__fft_coefficient__attr_"angle"__coeff_98 | Close__fft_coefficient__attr_"angle"__coeff_99 | Close__fft_aggregated__aggtype_"centroid" | Close__fft_aggregated__aggtype_"variance" | Close__fft_aggregated__aggtype_"skew" | Close__fft_aggregated__aggtype_"kurtosis" | Close__value_count__value_0 | Close__value_count__value_1 | Close__value_count__value_-1 | Close__range_count__max_1__min_-1 | Close__range_count__max_0__min_1000000000000.0 | Close__range_count__max_1000000000000.0__min_0 | Close__approximate_entropy__m_2__r_0.1 | Close__approximate_entropy__m_2__r_0.3 | Close__approximate_entropy__m_2__r_0.5 | Close__approximate_entropy__m_2__r_0.7 | Close__approximate_entropy__m_2__r_0.9 | Close__friedrich_coefficients__coeff_0__m_3__r_30 | Close__friedrich_coefficients__coeff_1__m_3__r_30 | Close__friedrich_coefficients__coeff_2__m_3__r_30 | Close__friedrich_coefficients__coeff_3__m_3__r_30 | Close__max_langevin_fixed_point__m_3__r_30 | Close__linear_trend__attr_"pvalue" | Close__linear_trend__attr_"rvalue" | Close__linear_trend__attr_"intercept" | Close__linear_trend__attr_"slope" | Close__linear_trend__attr_"stderr" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_10__f_agg_"max" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_10__f_agg_"min" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_10__f_agg_"mean" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_10__f_agg_"var" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_50__f_agg_"max" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_50__f_agg_"min" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_50__f_agg_"mean" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_50__f_agg_"var" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"intercept"__chunk_len_10__f_agg_"max" | Close__agg_linear_trend__attr_"intercept"__chunk_len_10__f_agg_"min" | Close__agg_linear_trend__attr_"intercept"__chunk_len_10__f_agg_"mean" | Close__agg_linear_trend__attr_"intercept"__chunk_len_10__f_agg_"var" | Close__agg_linear_trend__attr_"intercept"__chunk_len_50__f_agg_"max" | Close__agg_linear_trend__attr_"intercept"__chunk_len_50__f_agg_"min" | Close__agg_linear_trend__attr_"intercept"__chunk_len_50__f_agg_"mean" | Close__agg_linear_trend__attr_"intercept"__chunk_len_50__f_agg_"var" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"slope"__chunk_len_10__f_agg_"max" | Close__agg_linear_trend__attr_"slope"__chunk_len_10__f_agg_"min" | Close__agg_linear_trend__attr_"slope"__chunk_len_10__f_agg_"mean" | Close__agg_linear_trend__attr_"slope"__chunk_len_10__f_agg_"var" | Close__agg_linear_trend__attr_"slope"__chunk_len_50__f_agg_"max" | Close__agg_linear_trend__attr_"slope"__chunk_len_50__f_agg_"min" | Close__agg_linear_trend__attr_"slope"__chunk_len_50__f_agg_"mean" | Close__agg_linear_trend__attr_"slope"__chunk_len_50__f_agg_"var" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"stderr"__chunk_len_10__f_agg_"max" | Close__agg_linear_trend__attr_"stderr"__chunk_len_10__f_agg_"min" | Close__agg_linear_trend__attr_"stderr"__chunk_len_10__f_agg_"mean" | Close__agg_linear_trend__attr_"stderr"__chunk_len_10__f_agg_"var" | Close__agg_linear_trend__attr_"stderr"__chunk_len_50__f_agg_"max" | Close__agg_linear_trend__attr_"stderr"__chunk_len_50__f_agg_"min" | Close__agg_linear_trend__attr_"stderr"__chunk_len_50__f_agg_"mean" | Close__agg_linear_trend__attr_"stderr"__chunk_len_50__f_agg_"var" | Close__augmented_dickey_fuller__attr_"teststat"__autolag_"AIC" | Close__augmented_dickey_fuller__attr_"pvalue"__autolag_"AIC" | Close__augmented_dickey_fuller__attr_"usedlag"__autolag_"AIC" | Close__number_crossing_m__m_0 | Close__number_crossing_m__m_-1 | Close__number_crossing_m__m_1 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_0 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_1 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_2 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_3 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_4 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_5 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_6 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_7 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_8 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_9 | Close__ratio_beyond_r_sigma__r_0.5 | Close__ratio_beyond_r_sigma__r_1 | Close__ratio_beyond_r_sigma__r_1.5 | Close__ratio_beyond_r_sigma__r_2 | Close__ratio_beyond_r_sigma__r_2.5 | Close__ratio_beyond_r_sigma__r_3 | Close__ratio_beyond_r_sigma__r_5 | Close__ratio_beyond_r_sigma__r_6 | Close__ratio_beyond_r_sigma__r_7 | Close__ratio_beyond_r_sigma__r_10 | Close__count_above__t_0 | Close__count_below__t_0 | Close__lempel_ziv_complexity__bins_2 | Close__lempel_ziv_complexity__bins_3 | Close__lempel_ziv_complexity__bins_5 | Close__lempel_ziv_complexity__bins_10 | Close__lempel_ziv_complexity__bins_100 | Close__fourier_entropy__bins_2 | Close__fourier_entropy__bins_3 | Close__fourier_entropy__bins_5 | Close__fourier_entropy__bins_10 | Close__fourier_entropy__bins_100 | Close__permutation_entropy__dimension_3__tau_1 | Close__permutation_entropy__dimension_4__tau_1 | Close__permutation_entropy__dimension_5__tau_1 | Close__permutation_entropy__dimension_6__tau_1 | Close__permutation_entropy__dimension_7__tau_1 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2007-01-11 | 1.0 | 0.0 | 0.0 | 0.0 | 9908.269776 | 1.402496e+07 | 4.323324 | 1.203328 | 0.722998 | 1414.849976 | 1415.467111 | 7.0 | 4.326073 | 0.003056 | 18.714907 | 0.825436 | 0.679915 | 25.939942 | 4.0 | 2.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.428571 | 0.285714 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | NaN | 1423.819946 | 1409.709961 | 0.864123 | 3.001703e+06 | 8.194405e+06 | 2.897416e+07 | 2.827448e+09 | 2.829842e+09 | 2.849675e+09 | 3.064915 | 13.259045 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1415.899976 | 1416.947974 | 1417.991968 | 1420.531958 | 1.0 | 0.067474 | -0.226154 | -0.414267 | -0.955827 | 0.622428 | 0.505620 | NaN | NaN | NaN | -0.066788 | -0.079340 | 0.292871 | 1.0 | 0.067474 | -0.231761 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1.0 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.945910 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1092.890232 | 1784.100473 | 1472.674315 | 1082.936512 | 1665.663395 | 2299.461895 | 1854.183876 | 1355.773566 | 1661.665582 | 2724.309499 | 2219.205011 | 1626.046175 | 1304.985330 | 3019.046500 | 2558.839384 | 1892.931325 | 1660.852236 | 2726.139942 | 2220.997060 | 1627.412356 | 1668.025296 | 2301.121766 | 1855.253095 | 1356.505531 | 1095.901518 | 1786.348989 | 1474.331060 | 1084.120946 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.221269 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 1.203328 | 27.852379 | 4.323324 | 10.609250 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 5.354980 | 13.068153 | 5.354980 | 13.068153 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 5.354980 | 13.068153 | 5.354980 | 13.068153 | 0.0 | 0.0 | 0.0 | 0.0 | 1.739990 | 0.000000 | 1.739990 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.0 | 9908.269776 | 14.942022 | 0.646814 | -11.623808 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 8.978838 | 3.683139 | -2.352630 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 9908.269776 | 17.432256 | 3.739503 | 11.859502 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 31.002157 | 80.039569 | -168.558043 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.006085 | 0.013958 | NaN | NaN | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.182322 | 0.182322 | 0.231830 | 0.089726 | -0.172668 | 732.046794 | -1.034532e+06 | 4.873344e+08 | 1417.322689 | 0.540053 | 0.282010 | 1413.637116 | 0.609998 | 0.928076 | 1.0 | 1.0 | 1.0 | 1.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1418.339966 | 1409.709961 | 1413.919971 | 9.777085 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 5.479980 | 5.140015 | 5.414990 | 10.338005 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | -1.091160 | 7.185842e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143085 | 0.143436 | 0.141696 | 0.142326 | 0.142179 | 0.142731 | 0.144547 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.428571 | 0.714286 | 0.857143 | 0.857143 | 1.0 | 0.562335 | 1.039721 | 1.386294 | 1.386294 | 1.386294 | 1.609438 | 1.386294 | 1.098612 | 0.693147 | -0.0 |
2007-01-12 | 1.0 | 0.0 | 0.0 | 0.0 | 9922.399780 | 1.406519e+07 | 5.184998 | 2.065002 | 1.554004 | 1414.849976 | 1417.485683 | 7.0 | 6.909142 | 0.004874 | 47.736244 | 1.029587 | 0.224793 | 31.109986 | 4.0 | 2.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | NaN | 1430.729980 | 1409.709961 | 0.864123 | 2.139352e+07 | 3.815444e+07 | 4.984751e+07 | 2.837403e+09 | 2.843172e+09 | 2.865540e+09 | 2.149330 | 14.850026 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1416.943970 | 1419.435962 | 1422.723950 | 1426.583960 | 1.0 | 0.474208 | -0.079115 | -0.443700 | -0.789298 | -1.021998 | 0.237019 | NaN | NaN | NaN | -0.270481 | -0.261408 | 0.285449 | 1.0 | 0.474208 | -0.392179 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.747868 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1090.635934 | 1782.415551 | 1471.453571 | 1082.067660 | 1661.665582 | 2298.240579 | 1853.598035 | 1355.414981 | 1657.553299 | 2725.314613 | 2220.831157 | 1627.382071 | 1304.767547 | 3022.801684 | 2562.376781 | 1895.610355 | 1668.025296 | 2731.440549 | 2224.506851 | 1629.836161 | 1676.664643 | 2308.552658 | 1860.878944 | 1360.556957 | 1103.962161 | 1792.975951 | 1479.182736 | 1087.580811 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 27.487946 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | -0.872498 | 22.317333 | 3.807495 | 8.581563 | 2.065002 | 32.489644 | 5.184998 | 9.869678 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 7.940002 | 1.060834 | 7.940002 | 1.060834 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 7.940002 | 1.060834 | 7.940002 | 1.060834 | 0.0 | 0.0 | 0.0 | 0.0 | 6.910034 | 0.000000 | 6.910034 | 0.000000 | 6.910034 | 0.0 | 6.910034 | 0.0 | 9922.399780 | 11.106173 | -6.878946 | -1.237236 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 28.327639 | 13.586757 | 3.207044 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 9922.399780 | 30.426998 | 15.228916 | 3.437424 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 68.591772 | 116.852996 | 111.095972 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.007140 | 0.012212 | NaN | NaN | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.182322 | 0.089726 | 0.089726 | 0.033475 | 0.047758 | -202.842917 | 2.871778e+05 | -1.355243e+08 | 1422.707358 | 0.081909 | 0.696800 | 1410.264252 | 2.407144 | 1.108126 | 1.0 | 1.0 | 1.0 | 1.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1418.339966 | 1409.709961 | 1413.569971 | 8.391082 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 12.390014 | 14.109985 | 13.704992 | 3.546061 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.055767 | 9.629081e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143026 | 0.141291 | 0.141919 | 0.141772 | 0.142323 | 0.144133 | 0.145536 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.857143 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 0.562335 | 1.039721 | 1.386294 | 1.332179 | 1.386294 | 1.098612 | 0.693147 | -0.0 | |
2007-01-16 | 1.0 | 0.0 | 0.0 | 0.0 | 9935.959838 | 1.410384e+07 | 3.941671 | 3.698344 | -0.195996 | 1414.849976 | 1419.422834 | 7.0 | 8.576790 | 0.006042 | 73.561323 | 0.523817 | -1.913231 | 23.650025 | 4.0 | 3.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | NaN | 1431.900024 | 1409.709961 | 0.864123 | 3.238644e+07 | 6.952339e+07 | 8.921408e+07 | 2.855808e+09 | 2.857760e+09 | 2.855965e+09 | 1.415619 | 12.141470 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1420.231958 | 1425.201953 | 1429.347973 | 1431.197998 | 1.0 | 0.716435 | 0.196118 | -0.422348 | -0.944273 | -1.304766 | -1.647460 | NaN | NaN | NaN | -0.567716 | -0.683310 | 0.684084 | 1.0 | 0.716435 | -0.651629 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 2.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.549826 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1085.931822 | 1780.559154 | 1470.397627 | 1081.372885 | 1657.553299 | 2298.722358 | 1854.775111 | 1356.418464 | 1657.768570 | 2728.709010 | 2223.953383 | 1629.734931 | 1311.649402 | 3028.344900 | 2566.165750 | 1898.253491 | 1676.664643 | 2739.223354 | 2230.434674 | 1634.111115 | 1685.200230 | 2315.606676 | 1866.046736 | 1364.242889 | 1106.802728 | 1799.217911 | 1484.339382 | 1091.370113 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 55.018717 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 3.527496 | 12.131199 | 3.892487 | 9.422976 | 3.698344 | 10.891468 | 3.941671 | 9.032446 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 5.683349 | 10.892185 | 5.683349 | 10.892185 | 0.0 | 0.0 | 0.0 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 5.683349 | 10.892185 | 5.683349 | 10.892185 | 0.0 | 0.0 | 0.0 | 0.0 | 4.040039 | 8.236871 | 4.040039 | 8.236871 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9935.959838 | -6.768296 | -14.732796 | -12.493963 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 36.946830 | 3.490265 | 2.457225 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 9935.959838 | 37.561657 | 15.140582 | 12.733305 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 100.380922 | 166.672088 | 168.873476 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.010603 | 0.021157 | NaN | NaN | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.089726 | 0.089726 | 0.320775 | -0.002624 | 11.124914 | -1.572176e+04 | 7.405715e+06 | 1431.283960 | 0.001050 | 0.949907 | 1407.202101 | 4.073578 | 0.599382 | 1.0 | 1.0 | 1.0 | -1.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1423.819946 | 1409.709961 | 1414.665967 | 23.651702 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 8.080078 | 21.020019 | 16.649035 | -23.309451 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.042121 | 9.618799e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.140904 | 0.141530 | 0.141384 | 0.141933 | 0.143738 | 0.145137 | 0.145374 | 0.0 | 0.0 | 0.0 | 1.000000 | 0.428571 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 1.039721 | 1.039721 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 | |
2007-01-17 | 1.0 | 0.0 | 0.0 | 0.0 | 9956.869872 | 1.416323e+07 | 3.633341 | 2.963338 | -0.055005 | 1423.819946 | 1422.409982 | 7.0 | 8.310960 | 0.005843 | 69.072059 | -0.133691 | -2.499627 | 21.800049 | 3.0 | 4.0 | 4.0 | 3.0 | 0.857143 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | inf | 1431.900024 | 1412.109985 | 0.864123 | 3.038264e+07 | 7.210461e+07 | 7.198378e+07 | 2.879481e+09 | 2.878297e+09 | 2.877878e+09 | 1.419898 | 11.800713 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1412.547974 | 1413.241968 | 1414.447974 | 1418.437964 | 1427.899975 | 1430.641992 | 1430.707983 | 1431.197998 | 1.0 | 0.806842 | 0.221842 | -0.576783 | -1.155497 | -1.269565 | -1.137507 | NaN | NaN | NaN | -0.518445 | -0.857145 | 0.610178 | 1.0 | 0.806842 | -1.229636 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.277034 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1085.322638 | 1784.190808 | 1473.906317 | 1084.043800 | 1657.768570 | 2304.712391 | 1860.124635 | 1360.420024 | 1662.502562 | 2736.041657 | 2229.801517 | 1633.995807 | 1320.607327 | 3035.862291 | 2571.788151 | 1902.288496 | 1685.200230 | 2745.892379 | 2235.272106 | 1637.552507 | 1687.521207 | 2321.381437 | 1870.857550 | 1367.784873 | 1104.260167 | 1803.086714 | 1488.228099 | 1094.349513 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 47.341055 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | -0.729981 | 0.0 | 0.729981 | 0.0 | 1.005005 | 3.010176 | 1.734986 | 1.010035 | 3.659993 | 16.104710 | 4.146647 | 12.305577 | 3.659993 | 16.104710 | 4.146647 | 12.305577 | 2.963338 | 14.428099 | 3.633341 | 10.008302 | 0.0 | 0.0 | 0.0 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 3.942505 | 17.260759 | 4.582519 | 11.804620 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 2.266683 | 11.780831 | 3.120036 | 7.184060 | 0.0 | 0.0 | 0.0 | 0.0 | -0.054993 | 1.500714 | 1.225036 | 0.003024 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9956.869872 | -20.068966 | -4.777321 | -8.648768 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 34.092428 | 5.245705 | 1.437713 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 9956.869872 | 39.560802 | 7.095084 | 8.767452 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 120.483767 | 132.324471 | 170.561840 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.007996 | 0.014603 | NaN | NaN | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.279777 | 0.279777 | 0.185620 | 0.007522 | -32.181593 | 4.589394e+04 | -2.181577e+07 | 1435.526774 | 0.001991 | 0.935083 | 1410.752821 | 3.885720 | 0.658664 | 1.0 | 1.0 | 1.0 | -1.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1430.729980 | 1412.109985 | 1418.869971 | 52.676159 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1.170044 | 18.510010 | 12.390039 | -52.266541 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | -2.591408 | 9.478614e-02 | 1.0 | 0.0 | 0.0 | 0.0 | 0.140937 | 0.140791 | 0.141338 | 0.143136 | 0.144528 | 0.144765 | 0.144506 | 0.0 | 0.0 | 0.0 | 0.857143 | 0.571429 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 0.562335 | 1.039721 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 | |
2007-01-18 | 1.0 | 0.0 | 0.0 | 0.0 | 9970.399901 | 1.420165e+07 | 4.220011 | 2.376668 | -0.698999 | 1426.369995 | 1424.342843 | 7.0 | 7.381920 | 0.005183 | 54.492749 | -0.800161 | -1.126892 | 25.320068 | 3.0 | 4.0 | 4.0 | 3.0 | 0.714286 | 0.571429 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | inf | 1431.900024 | 1412.109985 | 0.864123 | 2.425488e+07 | 5.158183e+07 | 5.791130e+07 | 2.899317e+09 | 2.894320e+09 | 2.881764e+09 | 1.696231 | 12.521440 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1413.753980 | 1416.643970 | 1422.025952 | 1424.839966 | 1428.919995 | 1430.641992 | 1430.707983 | 1431.197998 | 1.0 | 0.691774 | -0.010184 | -0.643236 | -0.936480 | -0.881136 | -0.455067 | NaN | NaN | NaN | -0.372388 | -0.549152 | 0.320142 | 1.0 | 0.691774 | -0.937263 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.475076 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1084.267375 | 1789.038417 | 1478.410191 | 1087.440602 | 1662.502562 | 2311.103630 | 1865.164953 | 1364.082935 | 1672.239492 | 2742.910041 | 2234.677082 | 1637.444076 | 1330.200668 | 3041.650078 | 2575.611511 | 1904.933203 | 1687.521207 | 2750.388873 | 2238.986047 | 1640.282559 | 1683.253483 | 2323.699027 | 1873.598022 | 1369.943117 | 1099.414296 | 1802.755734 | 1488.667354 | 1094.796802 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 22.515576 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 2.739991 | 0.0 | 2.739991 | 0.0 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 2.486654 | 29.160024 | 5.319987 | 7.041209 | 2.376668 | 20.482524 | 4.220011 | 8.322581 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | -4.25000 | 0.0 | 4.25000 | 0.0 | 0.637512 | 16.798215 | 3.402527 | 5.627448 | 0.0 | 0.0 | 0.0 | 0.0 | -4.25000 | 0.0 | 4.25000 | 0.0 | -1.453328 | 4.911162 | 2.233358 | 2.035439 | 0.0 | 0.0 | 0.0 | 0.0 | -0.054993 | 1.500714 | 1.225036 | 0.003024 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9970.399901 | -30.731494 | -7.061845 | -5.021665 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 16.143934 | 7.365980 | 0.822565 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 9970.399901 | 34.713849 | 10.204279 | 5.088588 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 152.286060 | 133.792396 | 170.697378 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.007024 | 0.012059 | NaN | NaN | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.048728 | 0.045429 | 0.089726 | 0.009583 | -40.969186 | 5.837954e+04 | -2.772887e+07 | 1434.657342 | 0.031742 | 0.797316 | 1415.514256 | 2.942862 | 0.996268 | -1.0 | 1.0 | 1.0 | -1.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1431.900024 | 1412.109985 | 1422.681982 | 64.828994 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | -1.280029 | 14.260010 | 5.813013 | -60.313369 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | -7.248865 | 1.801999e-10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.140410 | 0.140955 | 0.142748 | 0.144137 | 0.144373 | 0.144115 | 0.143260 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.428571 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.571429 | 0.714286 | 0.857143 | 1.0 | 0.693147 | 1.039721 | 1.039721 | 1.386294 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 |
df_features.shape
(3295, 779)
missing = df_features.isna().sum()
print(missing[missing>df_features.shape[0]*0.5].sort_values(ascending=False).head(10))
drop_cols = missing[missing>df_features.shape[0]*0.5].index.tolist()
print('features with more than half data missing:')
print(len(drop_cols), drop_cols[:5])
Close__agg_linear_trend__attr_"stderr"__chunk_len_50__f_agg_"var" 3295
Close__fft_coefficient__attr_"imag"__coeff_14 3295
Close__fft_coefficient__attr_"real"__coeff_98 3295
Close__fft_coefficient__attr_"real"__coeff_99 3295
Close__fft_coefficient__attr_"imag"__coeff_4 3295
Close__fft_coefficient__attr_"imag"__coeff_5 3295
Close__fft_coefficient__attr_"imag"__coeff_6 3295
Close__fft_coefficient__attr_"imag"__coeff_7 3295
Close__fft_coefficient__attr_"imag"__coeff_8 3295
Close__fft_coefficient__attr_"imag"__coeff_9 3295
dtype: int64
features with more than half data missing:
473 ['Close__sample_entropy', 'Close__autocorrelation__lag_7', 'Close__autocorrelation__lag_8', 'Close__autocorrelation__lag_9', 'Close__partial_autocorrelation__lag_3']
print(df_features.shape)
df_features.drop(columns=drop_cols, inplace=True)
print(df_features.shape)
(3295, 779)
(3295, 306)
missing = df_features.isna().sum()
print(missing[missing>0].sort_values(ascending=False).head(10))
Close__max_langevin_fixed_point__m_3__r_30 15
Close__friedrich_coefficients__coeff_3__m_3__r_30 15
Close__friedrich_coefficients__coeff_2__m_3__r_30 15
Close__friedrich_coefficients__coeff_1__m_3__r_30 15
Close__friedrich_coefficients__coeff_0__m_3__r_30 15
dtype: int64
from tsfresh.utilities.dataframe_functions import impute
impute(df_features)
Close__variance_larger_than_standard_deviation | Close__has_duplicate_max | Close__has_duplicate_min | Close__has_duplicate | Close__sum_values | Close__abs_energy | Close__mean_abs_change | Close__mean_change | Close__mean_second_derivative_central | Close__median | Close__mean | Close__length | Close__standard_deviation | Close__variation_coefficient | Close__variance | Close__skewness | Close__kurtosis | Close__absolute_sum_of_changes | Close__longest_strike_below_mean | Close__longest_strike_above_mean | Close__count_above_mean | Close__count_below_mean | Close__last_location_of_maximum | Close__first_location_of_maximum | Close__last_location_of_minimum | Close__first_location_of_minimum | Close__percentage_of_reoccurring_values_to_all_values | Close__percentage_of_reoccurring_datapoints_to_all_datapoints | Close__sum_of_reoccurring_values | Close__sum_of_reoccurring_data_points | Close__ratio_value_number_to_time_series_length | Close__maximum | Close__minimum | Close__benford_correlation | Close__time_reversal_asymmetry_statistic__lag_1 | Close__time_reversal_asymmetry_statistic__lag_2 | Close__time_reversal_asymmetry_statistic__lag_3 | Close__c3__lag_1 | Close__c3__lag_2 | Close__c3__lag_3 | Close__cid_ce__normalize_True | Close__cid_ce__normalize_False | Close__symmetry_looking__r_0.0 | Close__symmetry_looking__r_0.05 | Close__symmetry_looking__r_0.1 | Close__symmetry_looking__r_0.15000000000000002 | Close__symmetry_looking__r_0.2 | Close__symmetry_looking__r_0.25 | Close__symmetry_looking__r_0.30000000000000004 | Close__symmetry_looking__r_0.35000000000000003 | Close__symmetry_looking__r_0.4 | Close__symmetry_looking__r_0.45 | Close__symmetry_looking__r_0.5 | Close__symmetry_looking__r_0.55 | Close__symmetry_looking__r_0.6000000000000001 | Close__symmetry_looking__r_0.65 | Close__symmetry_looking__r_0.7000000000000001 | Close__symmetry_looking__r_0.75 | Close__symmetry_looking__r_0.8 | Close__symmetry_looking__r_0.8500000000000001 | Close__symmetry_looking__r_0.9 | Close__symmetry_looking__r_0.9500000000000001 | Close__large_standard_deviation__r_0.05 | Close__large_standard_deviation__r_0.1 | Close__large_standard_deviation__r_0.15000000000000002 | Close__large_standard_deviation__r_0.2 | Close__large_standard_deviation__r_0.25 | Close__large_standard_deviation__r_0.30000000000000004 | Close__large_standard_deviation__r_0.35000000000000003 | Close__large_standard_deviation__r_0.4 | Close__large_standard_deviation__r_0.45 | Close__large_standard_deviation__r_0.5 | Close__large_standard_deviation__r_0.55 | Close__large_standard_deviation__r_0.6000000000000001 | Close__large_standard_deviation__r_0.65 | Close__large_standard_deviation__r_0.7000000000000001 | Close__large_standard_deviation__r_0.75 | Close__large_standard_deviation__r_0.8 | Close__large_standard_deviation__r_0.8500000000000001 | Close__large_standard_deviation__r_0.9 | Close__large_standard_deviation__r_0.9500000000000001 | Close__quantile__q_0.1 | Close__quantile__q_0.2 | Close__quantile__q_0.3 | Close__quantile__q_0.4 | Close__quantile__q_0.6 | Close__quantile__q_0.7 | Close__quantile__q_0.8 | Close__quantile__q_0.9 | Close__autocorrelation__lag_0 | Close__autocorrelation__lag_1 | Close__autocorrelation__lag_2 | Close__autocorrelation__lag_3 | Close__autocorrelation__lag_4 | Close__autocorrelation__lag_5 | Close__autocorrelation__lag_6 | Close__agg_autocorrelation__f_agg_"mean"__maxlag_40 | Close__agg_autocorrelation__f_agg_"median"__maxlag_40 | Close__agg_autocorrelation__f_agg_"var"__maxlag_40 | Close__partial_autocorrelation__lag_0 | Close__partial_autocorrelation__lag_1 | Close__partial_autocorrelation__lag_2 | Close__number_cwt_peaks__n_1 | Close__number_cwt_peaks__n_5 | Close__number_peaks__n_1 | Close__number_peaks__n_3 | Close__number_peaks__n_5 | Close__number_peaks__n_10 | Close__number_peaks__n_50 | Close__binned_entropy__max_bins_10 | Close__index_mass_quantile__q_0.1 | Close__index_mass_quantile__q_0.2 | Close__index_mass_quantile__q_0.3 | Close__index_mass_quantile__q_0.4 | Close__index_mass_quantile__q_0.6 | Close__index_mass_quantile__q_0.7 | Close__index_mass_quantile__q_0.8 | Close__index_mass_quantile__q_0.9 | Close__cwt_coefficients__coeff_0__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_20__widths_(2, 5, 10, 20) | Close__spkt_welch_density__coeff_2 | Close__ar_coefficient__coeff_10__k_10 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.8 | Close__fft_coefficient__attr_"real"__coeff_0 | Close__fft_coefficient__attr_"real"__coeff_1 | Close__fft_coefficient__attr_"real"__coeff_2 | Close__fft_coefficient__attr_"real"__coeff_3 | Close__fft_coefficient__attr_"imag"__coeff_0 | Close__fft_coefficient__attr_"imag"__coeff_1 | Close__fft_coefficient__attr_"imag"__coeff_2 | Close__fft_coefficient__attr_"imag"__coeff_3 | Close__fft_coefficient__attr_"abs"__coeff_0 | Close__fft_coefficient__attr_"abs"__coeff_1 | Close__fft_coefficient__attr_"abs"__coeff_2 | Close__fft_coefficient__attr_"abs"__coeff_3 | Close__fft_coefficient__attr_"angle"__coeff_0 | Close__fft_coefficient__attr_"angle"__coeff_1 | Close__fft_coefficient__attr_"angle"__coeff_2 | Close__fft_coefficient__attr_"angle"__coeff_3 | Close__fft_aggregated__aggtype_"centroid" | Close__fft_aggregated__aggtype_"variance" | Close__value_count__value_0 | Close__value_count__value_1 | Close__value_count__value_-1 | Close__range_count__max_1__min_-1 | Close__range_count__max_0__min_1000000000000.0 | Close__range_count__max_1000000000000.0__min_0 | Close__approximate_entropy__m_2__r_0.1 | Close__approximate_entropy__m_2__r_0.3 | Close__approximate_entropy__m_2__r_0.5 | Close__approximate_entropy__m_2__r_0.7 | Close__approximate_entropy__m_2__r_0.9 | Close__friedrich_coefficients__coeff_0__m_3__r_30 | Close__friedrich_coefficients__coeff_1__m_3__r_30 | Close__friedrich_coefficients__coeff_2__m_3__r_30 | Close__friedrich_coefficients__coeff_3__m_3__r_30 | Close__max_langevin_fixed_point__m_3__r_30 | Close__linear_trend__attr_"pvalue" | Close__linear_trend__attr_"rvalue" | Close__linear_trend__attr_"intercept" | Close__linear_trend__attr_"slope" | Close__linear_trend__attr_"stderr" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"var" | Close__augmented_dickey_fuller__attr_"teststat"__autolag_"AIC" | Close__augmented_dickey_fuller__attr_"pvalue"__autolag_"AIC" | Close__augmented_dickey_fuller__attr_"usedlag"__autolag_"AIC" | Close__number_crossing_m__m_0 | Close__number_crossing_m__m_-1 | Close__number_crossing_m__m_1 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_0 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_1 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_2 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_3 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_4 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_5 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_6 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_7 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_8 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_9 | Close__ratio_beyond_r_sigma__r_0.5 | Close__ratio_beyond_r_sigma__r_1 | Close__ratio_beyond_r_sigma__r_1.5 | Close__ratio_beyond_r_sigma__r_2 | Close__ratio_beyond_r_sigma__r_2.5 | Close__ratio_beyond_r_sigma__r_3 | Close__ratio_beyond_r_sigma__r_5 | Close__ratio_beyond_r_sigma__r_6 | Close__ratio_beyond_r_sigma__r_7 | Close__ratio_beyond_r_sigma__r_10 | Close__count_above__t_0 | Close__count_below__t_0 | Close__lempel_ziv_complexity__bins_2 | Close__lempel_ziv_complexity__bins_3 | Close__lempel_ziv_complexity__bins_5 | Close__lempel_ziv_complexity__bins_10 | Close__lempel_ziv_complexity__bins_100 | Close__fourier_entropy__bins_2 | Close__fourier_entropy__bins_3 | Close__fourier_entropy__bins_5 | Close__fourier_entropy__bins_10 | Close__fourier_entropy__bins_100 | Close__permutation_entropy__dimension_3__tau_1 | Close__permutation_entropy__dimension_4__tau_1 | Close__permutation_entropy__dimension_5__tau_1 | Close__permutation_entropy__dimension_6__tau_1 | Close__permutation_entropy__dimension_7__tau_1 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2007-01-11 | 1.0 | 0.0 | 0.0 | 0.0 | 9908.269776 | 1.402496e+07 | 4.323324 | 1.203328 | 0.722998 | 1414.849976 | 1415.467111 | 7.0 | 4.326073 | 0.003056 | 18.714907 | 0.825436 | 0.679915 | 25.939942 | 4.0 | 2.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.428571 | 0.285714 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1423.819946 | 1409.709961 | 0.864123 | 3.001703e+06 | 8.194405e+06 | 2.897416e+07 | 2.827448e+09 | 2.829842e+09 | 2.849675e+09 | 3.064915 | 13.259045 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1415.899976 | 1416.947974 | 1417.991968 | 1420.531958 | 1.0 | 0.067474 | -0.226154 | -0.414267 | -0.955827 | 0.622428 | 0.505620 | -0.066788 | -0.079340 | 0.292871 | 1.0 | 0.067474 | -0.231761 | 1.0 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.945910 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1092.890232 | 1784.100473 | 1472.674315 | 1082.936512 | 1665.663395 | 2299.461895 | 1854.183876 | 1355.773566 | 1661.665582 | 2724.309499 | 2219.205011 | 1626.046175 | 1304.985330 | 3019.046500 | 2558.839384 | 1892.931325 | 1660.852236 | 2726.139942 | 2220.997060 | 1627.412356 | 1668.025296 | 2301.121766 | 1855.253095 | 1356.505531 | 1095.901518 | 1786.348989 | 1474.331060 | 1084.120946 | 0.221269 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 1.203328 | 27.852379 | 4.323324 | 10.609250 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 5.354980 | 13.068153 | 5.354980 | 13.068153 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 5.354980 | 13.068153 | 5.354980 | 13.068153 | 0.0 | 0.0 | 0.0 | 0.0 | 1.739990 | 0.000000 | 1.739990 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.0 | 9908.269776 | 14.942022 | 0.646814 | -11.623808 | 0.0 | 8.978838 | 3.683139 | -2.352630 | 9908.269776 | 17.432256 | 3.739503 | 11.859502 | 0.0 | 31.002157 | 80.039569 | -168.558043 | 0.006085 | 0.013958 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.182322 | 0.182322 | 0.231830 | 0.089726 | -0.172668 | 732.046794 | -1.034532e+06 | 4.873344e+08 | 1417.322689 | 0.540053 | 0.282010 | 1413.637116 | 0.609998 | 0.928076 | 1.0 | 1.0 | 1.0 | 1.0 | 1418.339966 | 1409.709961 | 1413.919971 | 9.777085 | 5.479980 | 5.140015 | 5.414990 | 10.338005 | 0.0 | 0.0 | 0.0 | 0.0 | -1.091160 | 7.185842e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143085 | 0.143436 | 0.141696 | 0.142326 | 0.142179 | 0.142731 | 0.144547 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.285714 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.428571 | 0.714286 | 0.857143 | 0.857143 | 1.0 | 0.562335 | 1.039721 | 1.386294 | 1.386294 | 1.386294 | 1.609438 | 1.386294 | 1.098612 | 0.693147 | -0.0 |
2007-01-12 | 1.0 | 0.0 | 0.0 | 0.0 | 9922.399780 | 1.406519e+07 | 5.184998 | 2.065002 | 1.554004 | 1414.849976 | 1417.485683 | 7.0 | 6.909142 | 0.004874 | 47.736244 | 1.029587 | 0.224793 | 31.109986 | 4.0 | 2.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1430.729980 | 1409.709961 | 0.864123 | 2.139352e+07 | 3.815444e+07 | 4.984751e+07 | 2.837403e+09 | 2.843172e+09 | 2.865540e+09 | 2.149330 | 14.850026 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1416.943970 | 1419.435962 | 1422.723950 | 1426.583960 | 1.0 | 0.474208 | -0.079115 | -0.443700 | -0.789298 | -1.021998 | 0.237019 | -0.270481 | -0.261408 | 0.285449 | 1.0 | 0.474208 | -0.392179 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.747868 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1090.635934 | 1782.415551 | 1471.453571 | 1082.067660 | 1661.665582 | 2298.240579 | 1853.598035 | 1355.414981 | 1657.553299 | 2725.314613 | 2220.831157 | 1627.382071 | 1304.767547 | 3022.801684 | 2562.376781 | 1895.610355 | 1668.025296 | 2731.440549 | 2224.506851 | 1629.836161 | 1676.664643 | 2308.552658 | 1860.878944 | 1360.556957 | 1103.962161 | 1792.975951 | 1479.182736 | 1087.580811 | 27.487946 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | -0.872498 | 22.317333 | 3.807495 | 8.581563 | 2.065002 | 32.489644 | 5.184998 | 9.869678 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 7.940002 | 1.060834 | 7.940002 | 1.060834 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 7.940002 | 1.060834 | 7.940002 | 1.060834 | 0.0 | 0.0 | 0.0 | 0.0 | 6.910034 | 0.000000 | 6.910034 | 0.000000 | 6.910034 | 0.0 | 6.910034 | 0.0 | 9922.399780 | 11.106173 | -6.878946 | -1.237236 | 0.0 | 28.327639 | 13.586757 | 3.207044 | 9922.399780 | 30.426998 | 15.228916 | 3.437424 | 0.0 | 68.591772 | 116.852996 | 111.095972 | 0.007140 | 0.012212 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.182322 | 0.089726 | 0.089726 | 0.033475 | 0.047758 | -202.842917 | 2.871778e+05 | -1.355243e+08 | 1422.707358 | 0.081909 | 0.696800 | 1410.264252 | 2.407144 | 1.108126 | 1.0 | 1.0 | 1.0 | 1.0 | 1418.339966 | 1409.709961 | 1413.569971 | 8.391082 | 12.390014 | 14.109985 | 13.704992 | 3.546061 | 0.0 | 0.0 | 0.0 | 0.0 | 0.055767 | 9.629081e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143026 | 0.141291 | 0.141919 | 0.141772 | 0.142323 | 0.144133 | 0.145536 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.285714 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.857143 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 0.562335 | 1.039721 | 1.386294 | 1.332179 | 1.386294 | 1.098612 | 0.693147 | -0.0 | |
2007-01-16 | 1.0 | 0.0 | 0.0 | 0.0 | 9935.959838 | 1.410384e+07 | 3.941671 | 3.698344 | -0.195996 | 1414.849976 | 1419.422834 | 7.0 | 8.576790 | 0.006042 | 73.561323 | 0.523817 | -1.913231 | 23.650025 | 4.0 | 3.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1409.709961 | 0.864123 | 3.238644e+07 | 6.952339e+07 | 8.921408e+07 | 2.855808e+09 | 2.857760e+09 | 2.855965e+09 | 1.415619 | 12.141470 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1420.231958 | 1425.201953 | 1429.347973 | 1431.197998 | 1.0 | 0.716435 | 0.196118 | -0.422348 | -0.944273 | -1.304766 | -1.647460 | -0.567716 | -0.683310 | 0.684084 | 1.0 | 0.716435 | -0.651629 | 2.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.549826 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1085.931822 | 1780.559154 | 1470.397627 | 1081.372885 | 1657.553299 | 2298.722358 | 1854.775111 | 1356.418464 | 1657.768570 | 2728.709010 | 2223.953383 | 1629.734931 | 1311.649402 | 3028.344900 | 2566.165750 | 1898.253491 | 1676.664643 | 2739.223354 | 2230.434674 | 1634.111115 | 1685.200230 | 2315.606676 | 1866.046736 | 1364.242889 | 1106.802728 | 1799.217911 | 1484.339382 | 1091.370113 | 55.018717 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 3.527496 | 12.131199 | 3.892487 | 9.422976 | 3.698344 | 10.891468 | 3.941671 | 9.032446 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 8.969970 | 0.000000 | 8.969970 | 0.00000 | 5.683349 | 10.892185 | 5.683349 | 10.892185 | 0.0 | 0.0 | 0.0 | 0.0 | 8.969970 | 0.0 | 8.969970 | 0.0 | 5.683349 | 10.892185 | 5.683349 | 10.892185 | 0.0 | 0.0 | 0.0 | 0.0 | 4.040039 | 8.236871 | 4.040039 | 8.236871 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9935.959838 | -6.768296 | -14.732796 | -12.493963 | 0.0 | 36.946830 | 3.490265 | 2.457225 | 9935.959838 | 37.561657 | 15.140582 | 12.733305 | 0.0 | 100.380922 | 166.672088 | 168.873476 | 0.010603 | 0.021157 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.089726 | 0.089726 | 0.320775 | -0.002624 | 11.124914 | -1.572176e+04 | 7.405715e+06 | 1431.283960 | 0.001050 | 0.949907 | 1407.202101 | 4.073578 | 0.599382 | 1.0 | 1.0 | 1.0 | -1.0 | 1423.819946 | 1409.709961 | 1414.665967 | 23.651702 | 8.080078 | 21.020019 | 16.649035 | -23.309451 | 0.0 | 0.0 | 0.0 | 0.0 | 0.042121 | 9.618799e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.140904 | 0.141530 | 0.141384 | 0.141933 | 0.143738 | 0.145137 | 0.145374 | 0.0 | 0.0 | 0.0 | 1.000000 | 0.428571 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 1.039721 | 1.039721 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 | |
2007-01-17 | 1.0 | 0.0 | 0.0 | 0.0 | 9956.869872 | 1.416323e+07 | 3.633341 | 2.963338 | -0.055005 | 1423.819946 | 1422.409982 | 7.0 | 8.310960 | 0.005843 | 69.072059 | -0.133691 | -2.499627 | 21.800049 | 3.0 | 4.0 | 4.0 | 3.0 | 0.857143 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1412.109985 | 0.864123 | 3.038264e+07 | 7.210461e+07 | 7.198378e+07 | 2.879481e+09 | 2.878297e+09 | 2.877878e+09 | 1.419898 | 11.800713 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1412.547974 | 1413.241968 | 1414.447974 | 1418.437964 | 1427.899975 | 1430.641992 | 1430.707983 | 1431.197998 | 1.0 | 0.806842 | 0.221842 | -0.576783 | -1.155497 | -1.269565 | -1.137507 | -0.518445 | -0.857145 | 0.610178 | 1.0 | 0.806842 | -1.229636 | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.277034 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1085.322638 | 1784.190808 | 1473.906317 | 1084.043800 | 1657.768570 | 2304.712391 | 1860.124635 | 1360.420024 | 1662.502562 | 2736.041657 | 2229.801517 | 1633.995807 | 1320.607327 | 3035.862291 | 2571.788151 | 1902.288496 | 1685.200230 | 2745.892379 | 2235.272106 | 1637.552507 | 1687.521207 | 2321.381437 | 1870.857550 | 1367.784873 | 1104.260167 | 1803.086714 | 1488.228099 | 1094.349513 | 47.341055 | 0.0 | -0.729981 | 0.0 | 0.729981 | 0.0 | 1.005005 | 3.010176 | 1.734986 | 1.010035 | 3.659993 | 16.104710 | 4.146647 | 12.305577 | 3.659993 | 16.104710 | 4.146647 | 12.305577 | 2.963338 | 14.428099 | 3.633341 | 10.008302 | 0.0 | 0.0 | 0.0 | 0.0 | 8.969970 | 0.0 | 8.969970 | 0.0 | 8.969970 | 0.000000 | 8.969970 | 0.00000 | 3.942505 | 17.260759 | 4.582519 | 11.804620 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 2.266683 | 11.780831 | 3.120036 | 7.184060 | 0.0 | 0.0 | 0.0 | 0.0 | -0.054993 | 1.500714 | 1.225036 | 0.003024 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9956.869872 | -20.068966 | -4.777321 | -8.648768 | 0.0 | 34.092428 | 5.245705 | 1.437713 | 9956.869872 | 39.560802 | 7.095084 | 8.767452 | 0.0 | 120.483767 | 132.324471 | 170.561840 | 0.007996 | 0.014603 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.279777 | 0.279777 | 0.185620 | 0.007522 | -32.181593 | 4.589394e+04 | -2.181577e+07 | 1435.526774 | 0.001991 | 0.935083 | 1410.752821 | 3.885720 | 0.658664 | 1.0 | 1.0 | 1.0 | -1.0 | 1430.729980 | 1412.109985 | 1418.869971 | 52.676159 | 1.170044 | 18.510010 | 12.390039 | -52.266541 | 0.0 | 0.0 | 0.0 | 0.0 | -2.591408 | 9.478614e-02 | 1.0 | 0.0 | 0.0 | 0.0 | 0.140937 | 0.140791 | 0.141338 | 0.143136 | 0.144528 | 0.144765 | 0.144506 | 0.0 | 0.0 | 0.0 | 0.857143 | 0.571429 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 0.562335 | 1.039721 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 | |
2007-01-18 | 1.0 | 0.0 | 0.0 | 0.0 | 9970.399901 | 1.420165e+07 | 4.220011 | 2.376668 | -0.698999 | 1426.369995 | 1424.342843 | 7.0 | 7.381920 | 0.005183 | 54.492749 | -0.800161 | -1.126892 | 25.320068 | 3.0 | 4.0 | 4.0 | 3.0 | 0.714286 | 0.571429 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1412.109985 | 0.864123 | 2.425488e+07 | 5.158183e+07 | 5.791130e+07 | 2.899317e+09 | 2.894320e+09 | 2.881764e+09 | 1.696231 | 12.521440 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1413.753980 | 1416.643970 | 1422.025952 | 1424.839966 | 1428.919995 | 1430.641992 | 1430.707983 | 1431.197998 | 1.0 | 0.691774 | -0.010184 | -0.643236 | -0.936480 | -0.881136 | -0.455067 | -0.372388 | -0.549152 | 0.320142 | 1.0 | 0.691774 | -0.937263 | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.475076 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1084.267375 | 1789.038417 | 1478.410191 | 1087.440602 | 1662.502562 | 2311.103630 | 1865.164953 | 1364.082935 | 1672.239492 | 2742.910041 | 2234.677082 | 1637.444076 | 1330.200668 | 3041.650078 | 2575.611511 | 1904.933203 | 1687.521207 | 2750.388873 | 2238.986047 | 1640.282559 | 1683.253483 | 2323.699027 | 1873.598022 | 1369.943117 | 1099.414296 | 1802.755734 | 1488.667354 | 1094.796802 | 22.515576 | 0.0 | 2.739991 | 0.0 | 2.739991 | 0.0 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 2.486654 | 29.160024 | 5.319987 | 7.041209 | 2.376668 | 20.482524 | 4.220011 | 8.322581 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | -4.250000 | 0.000000 | 4.250000 | 0.00000 | 0.637512 | 16.798215 | 3.402527 | 5.627448 | 0.0 | 0.0 | 0.0 | 0.0 | -4.250000 | 0.0 | 4.250000 | 0.0 | -1.453328 | 4.911162 | 2.233358 | 2.035439 | 0.0 | 0.0 | 0.0 | 0.0 | -0.054993 | 1.500714 | 1.225036 | 0.003024 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9970.399901 | -30.731494 | -7.061845 | -5.021665 | 0.0 | 16.143934 | 7.365980 | 0.822565 | 9970.399901 | 34.713849 | 10.204279 | 5.088588 | 0.0 | 152.286060 | 133.792396 | 170.697378 | 0.007024 | 0.012059 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.048728 | 0.045429 | 0.089726 | 0.009583 | -40.969186 | 5.837954e+04 | -2.772887e+07 | 1434.657342 | 0.031742 | 0.797316 | 1415.514256 | 2.942862 | 0.996268 | -1.0 | 1.0 | 1.0 | -1.0 | 1431.900024 | 1412.109985 | 1422.681982 | 64.828994 | -1.280029 | 14.260010 | 5.813013 | -60.313369 | 0.0 | 0.0 | 0.0 | 0.0 | -7.248865 | 1.801999e-10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.140410 | 0.140955 | 0.142748 | 0.144137 | 0.144373 | 0.144115 | 0.143260 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.428571 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.571429 | 0.714286 | 0.857143 | 1.0 | 0.693147 | 1.039721 | 1.039721 | 1.386294 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 | |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | |
2020-02-06 | 1.0 | 0.0 | 0.0 | 0.0 | 23009.559814 | 7.564553e+07 | 31.443319 | 12.063354 | 0.083008 | 3283.659912 | 3287.079973 | 7.0 | 40.120402 | 0.012205 | 1609.646659 | 0.057011 | -0.961725 | 188.659911 | 4.0 | 3.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.428571 | 0.285714 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 3345.780029 | 3225.520020 | 0.062915 | 5.406526e+08 | 1.405316e+09 | 1.556548e+09 | 3.523128e+10 | 3.532672e+10 | 3.558242e+10 | 2.215555 | 88.888945 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3239.559961 | 3253.815918 | 3268.503906 | 3277.503906 | 3292.018018 | 3305.010059 | 3327.269970 | 3339.125976 | 1.0 | 0.569533 | -0.108620 | -0.727610 | -0.811810 | -0.264675 | -0.498880 | -0.307010 | -0.381777 | 0.213003 | 1.0 | 0.569533 | -0.640865 | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.747868 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 2531.852484 | 4111.990185 | 3392.642933 | 2494.528862 | 3831.172737 | 5306.640743 | 4281.792952 | 3131.343434 | 3799.945768 | 6303.242352 | 5141.178386 | 3768.183398 | 2992.998312 | 7004.145420 | 5940.957478 | 4395.634896 | 3877.560394 | 6339.334547 | 5162.636248 | 3782.513712 | 3939.041393 | 5364.213558 | 4317.619648 | 3155.639960 | 2596.956748 | 4180.366882 | 3444.882243 | 2532.194392 | 2291.249326 | 0.0 | 23.399902 | 0.0 | 23.399902 | 0.0 | 23.399902 | 0.000000 | 23.399902 | 0.000000 | -8.159993 | 1277.771262 | 30.599935 | 408.000752 | 6.047546 | 1563.891011 | 35.117493 | 367.225550 | 12.063354 | 1171.349555 | 31.443319 | 328.191799 | 0.0 | 0.0 | 0.0 | 0.0 | 10.260010 | 0.0 | 10.260010 | 0.0 | 10.260010 | 0.000000 | 10.260010 | 0.00000 | 19.483317 | 155.286009 | 19.483317 | 155.286009 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 24.094971 | 169.126969 | 24.094971 | 169.126969 | 0.0 | 0.0 | 0.0 | 0.0 | 24.094971 | 169.126969 | 24.094971 | 169.126969 | 11.090088 | 0.0 | 11.090088 | 0.0 | 23009.559814 | 48.802337 | -30.651978 | -66.030609 | 0.0 | 176.117460 | -24.856286 | -10.949669 | 23009.559814 | 182.754009 | 39.463638 | 66.932329 | 0.0 | 74.511890 | -140.960731 | -170.584484 | 0.019850 | 0.040080 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.182322 | 0.182322 | 0.048728 | 0.048728 | 0.000202 | -1.978848 | 6.467264e+03 | -7.044525e+06 | 3323.616091 | 0.082033 | 0.696601 | 3245.158133 | 13.973947 | 6.436466 | 1.0 | 1.0 | 1.0 | -1.0 | 3297.590088 | 3225.520020 | 3265.817969 | 658.951374 | 48.189941 | 109.169921 | 74.417016 | -628.203861 | 0.0 | 0.0 | 0.0 | 0.0 | -0.464087 | 8.988363e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.141649 | 0.142539 | 0.137536 | 0.139539 | 0.143751 | 0.147003 | 0.147983 | 0.0 | 0.0 | 0.0 | 0.571429 | 0.428571 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.428571 | 0.571429 | 0.714286 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 1.039721 | 1.039721 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 | |
2020-02-07 | 1.0 | 0.0 | 0.0 | 0.0 | 23063.869873 | 7.600404e+07 | 32.744995 | 7.341675 | 4.006982 | 3297.590088 | 3294.838553 | 7.0 | 41.934999 | 0.012727 | 1758.544174 | -0.502863 | -1.189890 | 196.469969 | 3.0 | 4.0 | 4.0 | 3.0 | 0.857143 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 3345.780029 | 3225.520020 | 0.062915 | 7.138882e+08 | 1.810396e+09 | 9.603610e+08 | 3.572277e+10 | 3.573857e+10 | 3.603299e+10 | 2.149158 | 90.124936 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3239.559961 | 3255.867920 | 3276.711914 | 3289.231982 | 3315.662012 | 3329.105957 | 3333.293945 | 3339.125976 | 1.0 | 0.724635 | -0.006506 | -0.716774 | -1.039891 | -0.809776 | -0.208956 | -0.342878 | -0.462865 | 0.352381 | 1.0 | 0.724635 | -1.119385 | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.747868 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 2502.431478 | 4111.879004 | 3397.401192 | 2498.879153 | 3799.945768 | 5318.706148 | 4296.354258 | 3142.823988 | 3807.692631 | 6325.406223 | 5159.906994 | 3782.018550 | 3049.349212 | 7029.334930 | 5956.645398 | 4406.310770 | 3939.041393 | 6365.084526 | 5176.460532 | 3791.374916 | 3947.743592 | 5394.951308 | 4343.947239 | 3175.152097 | 2578.263040 | 4198.655884 | 3464.110365 | 2547.043781 | 1346.157475 | 0.0 | 23.399902 | 0.0 | 23.399902 | 0.0 | -17.369995 | 1662.184501 | 40.769897 | 301.716726 | 4.643392 | 2077.301415 | 43.403320 | 215.014318 | 4.643392 | 2077.301415 | 43.403320 | 215.014318 | 7.341675 | 1299.850480 | 32.744995 | 281.515983 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 10.039958 | 507.838084 | 22.086670 | 120.817857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 10.039958 | 507.838084 | 22.086670 | 120.817857 | 0.0 | 0.0 | 0.0 | 0.0 | -3.489990 | 212.578674 | 14.580078 | 12.180030 | 11.090088 | 0.0 | 11.090088 | 0.0 | 23063.869873 | -73.404647 | 18.968668 | 15.310734 | 0.0 | 190.423958 | 28.595967 | 4.779955 | 23063.869873 | 204.082155 | 34.315299 | 16.039531 | 0.0 | 111.080659 | 56.442343 | 17.338172 | 0.013759 | 0.020640 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.182322 | 0.048728 | 0.048728 | 0.045429 | -0.000051 | 0.509022 | -1.683615e+03 | 1.856304e+06 | 3307.485553 | 0.038215 | 0.780869 | 3245.719962 | 16.372864 | 5.857736 | 1.0 | 1.0 | 1.0 | -1.0 | 3334.689941 | 3225.520020 | 3278.075977 | 1445.865187 | 11.090088 | 102.189941 | 58.669018 | -1364.233348 | 0.0 | 0.0 | 0.0 | 0.0 | -10.325013 | 2.941287e-18 | 1.0 | 0.0 | 0.0 | 0.0 | 0.141866 | 0.136887 | 0.138881 | 0.143073 | 0.146310 | 0.147285 | 0.145698 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.428571 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.857143 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 0.562335 | 1.039721 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 | |
2020-02-10 | 1.0 | 0.0 | 0.0 | 0.0 | 23132.300049 | 7.645812e+07 | 27.118367 | 21.095011 | 0.098022 | 3327.709961 | 3304.614293 | 7.0 | 45.971466 | 0.013911 | 2113.375693 | -0.860719 | -0.961861 | 162.710204 | 3.0 | 4.0 | 4.0 | 3.0 | 1.000000 | 0.857143 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 3352.090088 | 3225.520020 | 0.062915 | 8.884176e+08 | 1.848817e+09 | 2.776225e+09 | 3.630487e+10 | 3.620791e+10 | 3.605545e+10 | 1.589081 | 73.052362 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3239.559961 | 3258.653955 | 3287.856055 | 3309.638037 | 3331.897949 | 3336.907959 | 3343.562011 | 3348.304053 | 1.0 | 0.620680 | 0.117383 | -0.402895 | -0.769031 | -1.057756 | -1.776808 | -0.544738 | -0.585963 | 0.608036 | 1.0 | 0.620680 | -0.435719 | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.549826 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 2467.039757 | 4120.199597 | 3409.190497 | 2508.377336 | 3807.692631 | 5337.784130 | 4312.434884 | 3154.699038 | 3866.597076 | 6348.468321 | 5173.146822 | 3790.771130 | 3104.762406 | 7060.140127 | 5976.286910 | 4419.742159 | 3947.743592 | 6403.155055 | 5209.080333 | 3815.544700 | 3938.946286 | 5422.138838 | 4369.762268 | 3194.712051 | 2576.646615 | 4212.545226 | 3477.629508 | 2557.353929 | 871.491458 | 0.0 | 23.399902 | 0.0 | 23.399902 | 0.0 | 36.035034 | 159.646561 | 36.035034 | 159.646561 | 36.035034 | 159.646561 | 36.035034 | 159.646561 | 36.389974 | 106.683005 | 36.389974 | 106.683005 | 21.095011 | 444.441758 | 27.118367 | 154.035414 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 37.099853 | 0.000000 | 37.099853 | 0.00000 | 13.625000 | 419.436149 | 22.660034 | 91.599633 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 5.800049 | 314.328766 | 17.846761 | 29.462456 | 0.0 | 0.0 | 0.0 | 0.0 | 11.090088 | 0.000000 | 11.090088 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.0 | 23132.300049 | -151.980977 | -47.327079 | -77.521898 | 0.0 | 114.838198 | 78.844371 | 32.027229 | 23132.300049 | 190.488921 | 91.958074 | 83.877220 | 0.0 | 142.924977 | 120.974686 | 157.552629 | 0.026641 | 0.055175 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.231830 | 0.253197 | 0.148999 | -0.000024 | 0.227850 | -7.092440e+02 | 7.339361e+05 | 3338.941783 | 0.004481 | 0.909695 | 3241.884269 | 20.910008 | 4.268852 | 1.0 | 1.0 | 1.0 | -1.0 | 3345.780029 | 3225.520020 | 3290.500000 | 2202.040505 | 6.310059 | 102.189941 | 49.400024 | -2053.442857 | 0.0 | 0.0 | 0.0 | 0.0 | -1.683590 | 4.395866e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.136074 | 0.138056 | 0.142223 | 0.145441 | 0.146410 | 0.144833 | 0.146963 | 0.0 | 0.0 | 0.0 | 0.857143 | 0.428571 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.571429 | 0.714286 | 0.857143 | 1.0 | 0.693147 | 1.039721 | 1.039721 | 1.386294 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 | |
2020-02-11 | 1.0 | 0.0 | 0.0 | 0.0 | 23264.530029 | 7.732863e+07 | 24.161702 | 18.138346 | -4.301025 | 3334.689941 | 3323.504290 | 7.0 | 35.583514 | 0.010707 | 1266.186474 | -1.464097 | 1.807174 | 144.970214 | 2.0 | 5.0 | 5.0 | 2.0 | 1.000000 | 0.857143 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 3357.750000 | 3248.919922 | 0.062915 | 7.175816e+08 | 1.151347e+09 | 2.405631e+09 | 3.688447e+10 | 3.676569e+10 | 3.649932e+10 | 1.951306 | 69.434334 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3278.122022 | 3303.614063 | 3321.685986 | 3330.501953 | 3341.343994 | 3347.042041 | 3350.828076 | 3354.354053 | 1.0 | 0.406068 | -0.092197 | -0.135803 | -0.176750 | -1.192361 | -2.017234 | -0.534713 | -0.156277 | 0.666421 | 1.0 | 0.406068 | -0.307850 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.549826 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 2498.386815 | 4160.498120 | 3440.979085 | 2531.485785 | 3866.597076 | 5378.332887 | 4340.679901 | 3174.558825 | 3907.540226 | 6391.328819 | 5206.660818 | 3815.101153 | 3112.055948 | 7099.384238 | 6010.257195 | 4444.972924 | 3938.946286 | 6432.044910 | 5236.356116 | 3836.185938 | 3939.627337 | 5438.093998 | 4384.810579 | 3206.115768 | 2587.254056 | 4220.503737 | 3483.751264 | 2561.788915 | 333.131002 | 0.0 | 48.670166 | 0.0 | 48.670166 | 0.0 | 48.670166 | 0.000000 | 48.670166 | 0.000000 | 42.885010 | 33.468036 | 42.885010 | 33.468036 | 19.697510 | 660.683500 | 28.732544 | 223.116320 | 18.138346 | 474.521518 | 24.161702 | 219.733266 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | -3.489990 | 212.578674 | 14.580078 | 12.18003 | 5.765015 | 235.750256 | 14.800049 | 49.944208 | 0.0 | 0.0 | 0.0 | 0.0 | 11.090088 | 0.0 | 11.090088 | 0.0 | 8.375000 | 7.371703 | 8.375000 | 7.371703 | 0.0 | 0.0 | 0.0 | 0.0 | 5.659912 | 0.000000 | 5.659912 | 0.000000 | 5.659912 | 0.0 | 5.659912 | 0.0 | 23264.530029 | -102.098664 | -95.760251 | -63.186373 | 0.0 | 56.158494 | 65.229685 | -5.118589 | 23264.530029 | 116.524304 | 115.866032 | 63.393356 | 0.0 | 151.187384 | 145.738207 | -175.368708 | 0.022854 | 0.048311 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.231830 | 0.148999 | 0.039257 | 0.000053 | -0.533547 | 1.780235e+03 | -1.978979e+06 | 3463.602560 | 0.013005 | 0.860170 | 3277.592477 | 15.303938 | 4.057983 | 1.0 | 1.0 | 1.0 | -1.0 | 3345.780029 | 3248.919922 | 3310.937988 | 1216.765823 | 11.969971 | 103.170166 | 43.982056 | -1208.757172 | 0.0 | 0.0 | 0.0 | 0.0 | -3.409190 | 1.064953e-02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.136502 | 0.140622 | 0.143804 | 0.144762 | 0.143203 | 0.145309 | 0.145800 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.142857 | 0.142857 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.571429 | 0.714286 | 0.857143 | 1.0 | 0.693147 | 1.039721 | 1.039721 | 1.039721 | 1.386294 | 0.950271 | 1.386294 | 1.098612 | 0.693147 | -0.0 | |
2020-02-12 | 1.0 | 0.0 | 0.0 | 0.0 | 23395.060058 | 7.819383e+07 | 19.666666 | 13.643310 | -1.539990 | 3345.780029 | 3342.151437 | 7.0 | 23.893758 | 0.007149 | 570.911679 | -0.477794 | 0.905277 | 117.999999 | 2.0 | 3.0 | 4.0 | 3.0 | 1.000000 | 0.857143 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 3379.449951 | 3297.590088 | 0.062915 | 4.688494e+08 | 8.283785e+08 | 1.818865e+09 | 3.734663e+10 | 3.738198e+10 | 3.708414e+10 | 2.262804 | 54.066899 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3315.662012 | 3329.105957 | 3333.293945 | 3339.125976 | 3349.566064 | 3353.222070 | 3356.618018 | 3366.429980 | 1.0 | 0.247067 | 0.044684 | 0.038241 | -0.247515 | -0.852492 | -2.911260 | -0.613546 | -0.104637 | 1.178218 | 1.0 | 0.247067 | -0.017421 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.945910 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 2547.792751 | 4192.506122 | 3462.902027 | 2546.824401 | 3907.540226 | 5414.155428 | 4368.154671 | 3194.418466 | 3920.657612 | 6425.720963 | 5235.047763 | 3835.945481 | 3097.857889 | 7132.773576 | 6042.710701 | 4469.681934 | 3939.627337 | 6454.526736 | 5257.004916 | 3851.735274 | 3959.043240 | 5453.972797 | 4396.795126 | 3214.743473 | 2607.357263 | 4234.572474 | 3493.212724 | 2568.361285 | 290.640914 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 37.099853 | 0.000000 | 37.099853 | 0.000000 | 10.039958 | 507.838084 | 22.086670 | 120.817857 | 13.625000 | 419.436149 | 22.660034 | 91.599633 | 13.643310 | 301.065007 | 19.666666 | 100.427157 | 0.0 | 0.0 | 0.0 | 0.0 | 11.090088 | 0.0 | 11.090088 | 0.0 | 11.090088 | 0.000000 | 11.090088 | 0.00000 | 12.816650 | 44.370984 | 12.816650 | 44.370984 | 0.0 | 0.0 | 0.0 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 13.679931 | 64.320713 | 13.679931 | 64.320713 | 0.0 | 0.0 | 0.0 | 0.0 | 13.679931 | 64.320713 | 13.679931 | 64.320713 | 21.699951 | 0.0 | 21.699951 | 0.0 | 23395.060058 | -26.179812 | -71.331244 | -58.453665 | 0.0 | 57.242784 | 19.383056 | 33.831007 | 23395.060058 | 62.945365 | 73.917854 | 67.537901 | 0.0 | 114.576842 | 164.797916 | 149.939192 | 0.017517 | 0.040646 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.048728 | 0.048728 | 0.395301 | 0.003275 | -32.695315 | 1.087831e+05 | -1.206434e+08 | 3352.436709 | 0.007118 | 0.890878 | 3310.221819 | 10.643206 | 2.426936 | 1.0 | 1.0 | 1.0 | -1.0 | 3352.090088 | 3297.590088 | 3331.572021 | 360.453454 | 27.359863 | 60.159912 | 37.027954 | -242.731485 | 0.0 | 0.0 | 0.0 | 0.0 | -1.514559 | 5.262971e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.139066 | 0.142213 | 0.143160 | 0.141618 | 0.143701 | 0.144186 | 0.146056 | 0.0 | 0.0 | 0.0 | 0.571429 | 0.285714 | 0.285714 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 0.562335 | 1.039721 | 1.386294 | 1.386294 | 1.386294 | 0.950271 | 1.386294 | 1.098612 | 0.693147 | -0.0 |
3295 rows × 306 columns
missing = df_features.isna().sum()
print(missing[missing>0].sort_values(ascending=False).head(10))
Series([], dtype: int64)
print(df_features.shape)
df_features.head()
(3295, 306)
Close__variance_larger_than_standard_deviation | Close__has_duplicate_max | Close__has_duplicate_min | Close__has_duplicate | Close__sum_values | Close__abs_energy | Close__mean_abs_change | Close__mean_change | Close__mean_second_derivative_central | Close__median | Close__mean | Close__length | Close__standard_deviation | Close__variation_coefficient | Close__variance | Close__skewness | Close__kurtosis | Close__absolute_sum_of_changes | Close__longest_strike_below_mean | Close__longest_strike_above_mean | Close__count_above_mean | Close__count_below_mean | Close__last_location_of_maximum | Close__first_location_of_maximum | Close__last_location_of_minimum | Close__first_location_of_minimum | Close__percentage_of_reoccurring_values_to_all_values | Close__percentage_of_reoccurring_datapoints_to_all_datapoints | Close__sum_of_reoccurring_values | Close__sum_of_reoccurring_data_points | Close__ratio_value_number_to_time_series_length | Close__maximum | Close__minimum | Close__benford_correlation | Close__time_reversal_asymmetry_statistic__lag_1 | Close__time_reversal_asymmetry_statistic__lag_2 | Close__time_reversal_asymmetry_statistic__lag_3 | Close__c3__lag_1 | Close__c3__lag_2 | Close__c3__lag_3 | Close__cid_ce__normalize_True | Close__cid_ce__normalize_False | Close__symmetry_looking__r_0.0 | Close__symmetry_looking__r_0.05 | Close__symmetry_looking__r_0.1 | Close__symmetry_looking__r_0.15000000000000002 | Close__symmetry_looking__r_0.2 | Close__symmetry_looking__r_0.25 | Close__symmetry_looking__r_0.30000000000000004 | Close__symmetry_looking__r_0.35000000000000003 | Close__symmetry_looking__r_0.4 | Close__symmetry_looking__r_0.45 | Close__symmetry_looking__r_0.5 | Close__symmetry_looking__r_0.55 | Close__symmetry_looking__r_0.6000000000000001 | Close__symmetry_looking__r_0.65 | Close__symmetry_looking__r_0.7000000000000001 | Close__symmetry_looking__r_0.75 | Close__symmetry_looking__r_0.8 | Close__symmetry_looking__r_0.8500000000000001 | Close__symmetry_looking__r_0.9 | Close__symmetry_looking__r_0.9500000000000001 | Close__large_standard_deviation__r_0.05 | Close__large_standard_deviation__r_0.1 | Close__large_standard_deviation__r_0.15000000000000002 | Close__large_standard_deviation__r_0.2 | Close__large_standard_deviation__r_0.25 | Close__large_standard_deviation__r_0.30000000000000004 | Close__large_standard_deviation__r_0.35000000000000003 | Close__large_standard_deviation__r_0.4 | Close__large_standard_deviation__r_0.45 | Close__large_standard_deviation__r_0.5 | Close__large_standard_deviation__r_0.55 | Close__large_standard_deviation__r_0.6000000000000001 | Close__large_standard_deviation__r_0.65 | Close__large_standard_deviation__r_0.7000000000000001 | Close__large_standard_deviation__r_0.75 | Close__large_standard_deviation__r_0.8 | Close__large_standard_deviation__r_0.8500000000000001 | Close__large_standard_deviation__r_0.9 | Close__large_standard_deviation__r_0.9500000000000001 | Close__quantile__q_0.1 | Close__quantile__q_0.2 | Close__quantile__q_0.3 | Close__quantile__q_0.4 | Close__quantile__q_0.6 | Close__quantile__q_0.7 | Close__quantile__q_0.8 | Close__quantile__q_0.9 | Close__autocorrelation__lag_0 | Close__autocorrelation__lag_1 | Close__autocorrelation__lag_2 | Close__autocorrelation__lag_3 | Close__autocorrelation__lag_4 | Close__autocorrelation__lag_5 | Close__autocorrelation__lag_6 | Close__agg_autocorrelation__f_agg_"mean"__maxlag_40 | Close__agg_autocorrelation__f_agg_"median"__maxlag_40 | Close__agg_autocorrelation__f_agg_"var"__maxlag_40 | Close__partial_autocorrelation__lag_0 | Close__partial_autocorrelation__lag_1 | Close__partial_autocorrelation__lag_2 | Close__number_cwt_peaks__n_1 | Close__number_cwt_peaks__n_5 | Close__number_peaks__n_1 | Close__number_peaks__n_3 | Close__number_peaks__n_5 | Close__number_peaks__n_10 | Close__number_peaks__n_50 | Close__binned_entropy__max_bins_10 | Close__index_mass_quantile__q_0.1 | Close__index_mass_quantile__q_0.2 | Close__index_mass_quantile__q_0.3 | Close__index_mass_quantile__q_0.4 | Close__index_mass_quantile__q_0.6 | Close__index_mass_quantile__q_0.7 | Close__index_mass_quantile__q_0.8 | Close__index_mass_quantile__q_0.9 | Close__cwt_coefficients__coeff_0__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_20__widths_(2, 5, 10, 20) | Close__spkt_welch_density__coeff_2 | Close__ar_coefficient__coeff_10__k_10 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.8 | Close__fft_coefficient__attr_"real"__coeff_0 | Close__fft_coefficient__attr_"real"__coeff_1 | Close__fft_coefficient__attr_"real"__coeff_2 | Close__fft_coefficient__attr_"real"__coeff_3 | Close__fft_coefficient__attr_"imag"__coeff_0 | Close__fft_coefficient__attr_"imag"__coeff_1 | Close__fft_coefficient__attr_"imag"__coeff_2 | Close__fft_coefficient__attr_"imag"__coeff_3 | Close__fft_coefficient__attr_"abs"__coeff_0 | Close__fft_coefficient__attr_"abs"__coeff_1 | Close__fft_coefficient__attr_"abs"__coeff_2 | Close__fft_coefficient__attr_"abs"__coeff_3 | Close__fft_coefficient__attr_"angle"__coeff_0 | Close__fft_coefficient__attr_"angle"__coeff_1 | Close__fft_coefficient__attr_"angle"__coeff_2 | Close__fft_coefficient__attr_"angle"__coeff_3 | Close__fft_aggregated__aggtype_"centroid" | Close__fft_aggregated__aggtype_"variance" | Close__value_count__value_0 | Close__value_count__value_1 | Close__value_count__value_-1 | Close__range_count__max_1__min_-1 | Close__range_count__max_0__min_1000000000000.0 | Close__range_count__max_1000000000000.0__min_0 | Close__approximate_entropy__m_2__r_0.1 | Close__approximate_entropy__m_2__r_0.3 | Close__approximate_entropy__m_2__r_0.5 | Close__approximate_entropy__m_2__r_0.7 | Close__approximate_entropy__m_2__r_0.9 | Close__friedrich_coefficients__coeff_0__m_3__r_30 | Close__friedrich_coefficients__coeff_1__m_3__r_30 | Close__friedrich_coefficients__coeff_2__m_3__r_30 | Close__friedrich_coefficients__coeff_3__m_3__r_30 | Close__max_langevin_fixed_point__m_3__r_30 | Close__linear_trend__attr_"pvalue" | Close__linear_trend__attr_"rvalue" | Close__linear_trend__attr_"intercept" | Close__linear_trend__attr_"slope" | Close__linear_trend__attr_"stderr" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"var" | Close__augmented_dickey_fuller__attr_"teststat"__autolag_"AIC" | Close__augmented_dickey_fuller__attr_"pvalue"__autolag_"AIC" | Close__augmented_dickey_fuller__attr_"usedlag"__autolag_"AIC" | Close__number_crossing_m__m_0 | Close__number_crossing_m__m_-1 | Close__number_crossing_m__m_1 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_0 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_1 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_2 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_3 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_4 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_5 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_6 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_7 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_8 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_9 | Close__ratio_beyond_r_sigma__r_0.5 | Close__ratio_beyond_r_sigma__r_1 | Close__ratio_beyond_r_sigma__r_1.5 | Close__ratio_beyond_r_sigma__r_2 | Close__ratio_beyond_r_sigma__r_2.5 | Close__ratio_beyond_r_sigma__r_3 | Close__ratio_beyond_r_sigma__r_5 | Close__ratio_beyond_r_sigma__r_6 | Close__ratio_beyond_r_sigma__r_7 | Close__ratio_beyond_r_sigma__r_10 | Close__count_above__t_0 | Close__count_below__t_0 | Close__lempel_ziv_complexity__bins_2 | Close__lempel_ziv_complexity__bins_3 | Close__lempel_ziv_complexity__bins_5 | Close__lempel_ziv_complexity__bins_10 | Close__lempel_ziv_complexity__bins_100 | Close__fourier_entropy__bins_2 | Close__fourier_entropy__bins_3 | Close__fourier_entropy__bins_5 | Close__fourier_entropy__bins_10 | Close__fourier_entropy__bins_100 | Close__permutation_entropy__dimension_3__tau_1 | Close__permutation_entropy__dimension_4__tau_1 | Close__permutation_entropy__dimension_5__tau_1 | Close__permutation_entropy__dimension_6__tau_1 | Close__permutation_entropy__dimension_7__tau_1 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2007-01-11 | 1.0 | 0.0 | 0.0 | 0.0 | 9908.269776 | 1.402496e+07 | 4.323324 | 1.203328 | 0.722998 | 1414.849976 | 1415.467111 | 7.0 | 4.326073 | 0.003056 | 18.714907 | 0.825436 | 0.679915 | 25.939942 | 4.0 | 2.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.428571 | 0.285714 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1423.819946 | 1409.709961 | 0.864123 | 3.001703e+06 | 8.194405e+06 | 2.897416e+07 | 2.827448e+09 | 2.829842e+09 | 2.849675e+09 | 3.064915 | 13.259045 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1415.899976 | 1416.947974 | 1417.991968 | 1420.531958 | 1.0 | 0.067474 | -0.226154 | -0.414267 | -0.955827 | 0.622428 | 0.505620 | -0.066788 | -0.079340 | 0.292871 | 1.0 | 0.067474 | -0.231761 | 1.0 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.945910 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1092.890232 | 1784.100473 | 1472.674315 | 1082.936512 | 1665.663395 | 2299.461895 | 1854.183876 | 1355.773566 | 1661.665582 | 2724.309499 | 2219.205011 | 1626.046175 | 1304.985330 | 3019.046500 | 2558.839384 | 1892.931325 | 1660.852236 | 2726.139942 | 2220.997060 | 1627.412356 | 1668.025296 | 2301.121766 | 1855.253095 | 1356.505531 | 1095.901518 | 1786.348989 | 1474.331060 | 1084.120946 | 0.221269 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 1.203328 | 27.852379 | 4.323324 | 10.609250 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 5.354980 | 13.068153 | 5.354980 | 13.068153 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 5.354980 | 13.068153 | 5.354980 | 13.068153 | 0.0 | 0.0 | 0.0 | 0.0 | 1.739990 | 0.000000 | 1.739990 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.0 | 9908.269776 | 14.942022 | 0.646814 | -11.623808 | 0.0 | 8.978838 | 3.683139 | -2.352630 | 9908.269776 | 17.432256 | 3.739503 | 11.859502 | 0.0 | 31.002157 | 80.039569 | -168.558043 | 0.006085 | 0.013958 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.182322 | 0.182322 | 0.231830 | 0.089726 | -0.172668 | 732.046794 | -1.034532e+06 | 4.873344e+08 | 1417.322689 | 0.540053 | 0.282010 | 1413.637116 | 0.609998 | 0.928076 | 1.0 | 1.0 | 1.0 | 1.0 | 1418.339966 | 1409.709961 | 1413.919971 | 9.777085 | 5.479980 | 5.140015 | 5.414990 | 10.338005 | 0.0 | 0.0 | 0.0 | 0.0 | -1.091160 | 7.185842e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143085 | 0.143436 | 0.141696 | 0.142326 | 0.142179 | 0.142731 | 0.144547 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.428571 | 0.714286 | 0.857143 | 0.857143 | 1.0 | 0.562335 | 1.039721 | 1.386294 | 1.386294 | 1.386294 | 1.609438 | 1.386294 | 1.098612 | 0.693147 | -0.0 |
2007-01-12 | 1.0 | 0.0 | 0.0 | 0.0 | 9922.399780 | 1.406519e+07 | 5.184998 | 2.065002 | 1.554004 | 1414.849976 | 1417.485683 | 7.0 | 6.909142 | 0.004874 | 47.736244 | 1.029587 | 0.224793 | 31.109986 | 4.0 | 2.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1430.729980 | 1409.709961 | 0.864123 | 2.139352e+07 | 3.815444e+07 | 4.984751e+07 | 2.837403e+09 | 2.843172e+09 | 2.865540e+09 | 2.149330 | 14.850026 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1416.943970 | 1419.435962 | 1422.723950 | 1426.583960 | 1.0 | 0.474208 | -0.079115 | -0.443700 | -0.789298 | -1.021998 | 0.237019 | -0.270481 | -0.261408 | 0.285449 | 1.0 | 0.474208 | -0.392179 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.747868 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1090.635934 | 1782.415551 | 1471.453571 | 1082.067660 | 1661.665582 | 2298.240579 | 1853.598035 | 1355.414981 | 1657.553299 | 2725.314613 | 2220.831157 | 1627.382071 | 1304.767547 | 3022.801684 | 2562.376781 | 1895.610355 | 1668.025296 | 2731.440549 | 2224.506851 | 1629.836161 | 1676.664643 | 2308.552658 | 1860.878944 | 1360.556957 | 1103.962161 | 1792.975951 | 1479.182736 | 1087.580811 | 27.487946 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | -0.872498 | 22.317333 | 3.807495 | 8.581563 | 2.065002 | 32.489644 | 5.184998 | 9.869678 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 7.940002 | 1.060834 | 7.940002 | 1.060834 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 7.940002 | 1.060834 | 7.940002 | 1.060834 | 0.0 | 0.0 | 0.0 | 0.0 | 6.910034 | 0.000000 | 6.910034 | 0.000000 | 6.910034 | 0.0 | 6.910034 | 0.0 | 9922.399780 | 11.106173 | -6.878946 | -1.237236 | 0.0 | 28.327639 | 13.586757 | 3.207044 | 9922.399780 | 30.426998 | 15.228916 | 3.437424 | 0.0 | 68.591772 | 116.852996 | 111.095972 | 0.007140 | 0.012212 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.182322 | 0.089726 | 0.089726 | 0.033475 | 0.047758 | -202.842917 | 2.871778e+05 | -1.355243e+08 | 1422.707358 | 0.081909 | 0.696800 | 1410.264252 | 2.407144 | 1.108126 | 1.0 | 1.0 | 1.0 | 1.0 | 1418.339966 | 1409.709961 | 1413.569971 | 8.391082 | 12.390014 | 14.109985 | 13.704992 | 3.546061 | 0.0 | 0.0 | 0.0 | 0.0 | 0.055767 | 9.629081e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143026 | 0.141291 | 0.141919 | 0.141772 | 0.142323 | 0.144133 | 0.145536 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.857143 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 0.562335 | 1.039721 | 1.386294 | 1.332179 | 1.386294 | 1.098612 | 0.693147 | -0.0 | |
2007-01-16 | 1.0 | 0.0 | 0.0 | 0.0 | 9935.959838 | 1.410384e+07 | 3.941671 | 3.698344 | -0.195996 | 1414.849976 | 1419.422834 | 7.0 | 8.576790 | 0.006042 | 73.561323 | 0.523817 | -1.913231 | 23.650025 | 4.0 | 3.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1409.709961 | 0.864123 | 3.238644e+07 | 6.952339e+07 | 8.921408e+07 | 2.855808e+09 | 2.857760e+09 | 2.855965e+09 | 1.415619 | 12.141470 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1420.231958 | 1425.201953 | 1429.347973 | 1431.197998 | 1.0 | 0.716435 | 0.196118 | -0.422348 | -0.944273 | -1.304766 | -1.647460 | -0.567716 | -0.683310 | 0.684084 | 1.0 | 0.716435 | -0.651629 | 2.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.549826 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1085.931822 | 1780.559154 | 1470.397627 | 1081.372885 | 1657.553299 | 2298.722358 | 1854.775111 | 1356.418464 | 1657.768570 | 2728.709010 | 2223.953383 | 1629.734931 | 1311.649402 | 3028.344900 | 2566.165750 | 1898.253491 | 1676.664643 | 2739.223354 | 2230.434674 | 1634.111115 | 1685.200230 | 2315.606676 | 1866.046736 | 1364.242889 | 1106.802728 | 1799.217911 | 1484.339382 | 1091.370113 | 55.018717 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 3.527496 | 12.131199 | 3.892487 | 9.422976 | 3.698344 | 10.891468 | 3.941671 | 9.032446 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 5.683349 | 10.892185 | 5.683349 | 10.892185 | 0.0 | 0.0 | 0.0 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 5.683349 | 10.892185 | 5.683349 | 10.892185 | 0.0 | 0.0 | 0.0 | 0.0 | 4.040039 | 8.236871 | 4.040039 | 8.236871 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9935.959838 | -6.768296 | -14.732796 | -12.493963 | 0.0 | 36.946830 | 3.490265 | 2.457225 | 9935.959838 | 37.561657 | 15.140582 | 12.733305 | 0.0 | 100.380922 | 166.672088 | 168.873476 | 0.010603 | 0.021157 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.089726 | 0.089726 | 0.320775 | -0.002624 | 11.124914 | -1.572176e+04 | 7.405715e+06 | 1431.283960 | 0.001050 | 0.949907 | 1407.202101 | 4.073578 | 0.599382 | 1.0 | 1.0 | 1.0 | -1.0 | 1423.819946 | 1409.709961 | 1414.665967 | 23.651702 | 8.080078 | 21.020019 | 16.649035 | -23.309451 | 0.0 | 0.0 | 0.0 | 0.0 | 0.042121 | 9.618799e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.140904 | 0.141530 | 0.141384 | 0.141933 | 0.143738 | 0.145137 | 0.145374 | 0.0 | 0.0 | 0.0 | 1.000000 | 0.428571 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 1.039721 | 1.039721 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 | |
2007-01-17 | 1.0 | 0.0 | 0.0 | 0.0 | 9956.869872 | 1.416323e+07 | 3.633341 | 2.963338 | -0.055005 | 1423.819946 | 1422.409982 | 7.0 | 8.310960 | 0.005843 | 69.072059 | -0.133691 | -2.499627 | 21.800049 | 3.0 | 4.0 | 4.0 | 3.0 | 0.857143 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1412.109985 | 0.864123 | 3.038264e+07 | 7.210461e+07 | 7.198378e+07 | 2.879481e+09 | 2.878297e+09 | 2.877878e+09 | 1.419898 | 11.800713 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1412.547974 | 1413.241968 | 1414.447974 | 1418.437964 | 1427.899975 | 1430.641992 | 1430.707983 | 1431.197998 | 1.0 | 0.806842 | 0.221842 | -0.576783 | -1.155497 | -1.269565 | -1.137507 | -0.518445 | -0.857145 | 0.610178 | 1.0 | 0.806842 | -1.229636 | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.277034 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1085.322638 | 1784.190808 | 1473.906317 | 1084.043800 | 1657.768570 | 2304.712391 | 1860.124635 | 1360.420024 | 1662.502562 | 2736.041657 | 2229.801517 | 1633.995807 | 1320.607327 | 3035.862291 | 2571.788151 | 1902.288496 | 1685.200230 | 2745.892379 | 2235.272106 | 1637.552507 | 1687.521207 | 2321.381437 | 1870.857550 | 1367.784873 | 1104.260167 | 1803.086714 | 1488.228099 | 1094.349513 | 47.341055 | 0.0 | -0.729981 | 0.0 | 0.729981 | 0.0 | 1.005005 | 3.010176 | 1.734986 | 1.010035 | 3.659993 | 16.104710 | 4.146647 | 12.305577 | 3.659993 | 16.104710 | 4.146647 | 12.305577 | 2.963338 | 14.428099 | 3.633341 | 10.008302 | 0.0 | 0.0 | 0.0 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 3.942505 | 17.260759 | 4.582519 | 11.804620 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 2.266683 | 11.780831 | 3.120036 | 7.184060 | 0.0 | 0.0 | 0.0 | 0.0 | -0.054993 | 1.500714 | 1.225036 | 0.003024 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9956.869872 | -20.068966 | -4.777321 | -8.648768 | 0.0 | 34.092428 | 5.245705 | 1.437713 | 9956.869872 | 39.560802 | 7.095084 | 8.767452 | 0.0 | 120.483767 | 132.324471 | 170.561840 | 0.007996 | 0.014603 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.279777 | 0.279777 | 0.185620 | 0.007522 | -32.181593 | 4.589394e+04 | -2.181577e+07 | 1435.526774 | 0.001991 | 0.935083 | 1410.752821 | 3.885720 | 0.658664 | 1.0 | 1.0 | 1.0 | -1.0 | 1430.729980 | 1412.109985 | 1418.869971 | 52.676159 | 1.170044 | 18.510010 | 12.390039 | -52.266541 | 0.0 | 0.0 | 0.0 | 0.0 | -2.591408 | 9.478614e-02 | 1.0 | 0.0 | 0.0 | 0.0 | 0.140937 | 0.140791 | 0.141338 | 0.143136 | 0.144528 | 0.144765 | 0.144506 | 0.0 | 0.0 | 0.0 | 0.857143 | 0.571429 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 0.562335 | 1.039721 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 | |
2007-01-18 | 1.0 | 0.0 | 0.0 | 0.0 | 9970.399901 | 1.420165e+07 | 4.220011 | 2.376668 | -0.698999 | 1426.369995 | 1424.342843 | 7.0 | 7.381920 | 0.005183 | 54.492749 | -0.800161 | -1.126892 | 25.320068 | 3.0 | 4.0 | 4.0 | 3.0 | 0.714286 | 0.571429 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1412.109985 | 0.864123 | 2.425488e+07 | 5.158183e+07 | 5.791130e+07 | 2.899317e+09 | 2.894320e+09 | 2.881764e+09 | 1.696231 | 12.521440 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1413.753980 | 1416.643970 | 1422.025952 | 1424.839966 | 1428.919995 | 1430.641992 | 1430.707983 | 1431.197998 | 1.0 | 0.691774 | -0.010184 | -0.643236 | -0.936480 | -0.881136 | -0.455067 | -0.372388 | -0.549152 | 0.320142 | 1.0 | 0.691774 | -0.937263 | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.475076 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1084.267375 | 1789.038417 | 1478.410191 | 1087.440602 | 1662.502562 | 2311.103630 | 1865.164953 | 1364.082935 | 1672.239492 | 2742.910041 | 2234.677082 | 1637.444076 | 1330.200668 | 3041.650078 | 2575.611511 | 1904.933203 | 1687.521207 | 2750.388873 | 2238.986047 | 1640.282559 | 1683.253483 | 2323.699027 | 1873.598022 | 1369.943117 | 1099.414296 | 1802.755734 | 1488.667354 | 1094.796802 | 22.515576 | 0.0 | 2.739991 | 0.0 | 2.739991 | 0.0 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 2.486654 | 29.160024 | 5.319987 | 7.041209 | 2.376668 | 20.482524 | 4.220011 | 8.322581 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | -4.25000 | 0.0 | 4.25000 | 0.0 | 0.637512 | 16.798215 | 3.402527 | 5.627448 | 0.0 | 0.0 | 0.0 | 0.0 | -4.25000 | 0.0 | 4.25000 | 0.0 | -1.453328 | 4.911162 | 2.233358 | 2.035439 | 0.0 | 0.0 | 0.0 | 0.0 | -0.054993 | 1.500714 | 1.225036 | 0.003024 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9970.399901 | -30.731494 | -7.061845 | -5.021665 | 0.0 | 16.143934 | 7.365980 | 0.822565 | 9970.399901 | 34.713849 | 10.204279 | 5.088588 | 0.0 | 152.286060 | 133.792396 | 170.697378 | 0.007024 | 0.012059 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.048728 | 0.045429 | 0.089726 | 0.009583 | -40.969186 | 5.837954e+04 | -2.772887e+07 | 1434.657342 | 0.031742 | 0.797316 | 1415.514256 | 2.942862 | 0.996268 | -1.0 | 1.0 | 1.0 | -1.0 | 1431.900024 | 1412.109985 | 1422.681982 | 64.828994 | -1.280029 | 14.260010 | 5.813013 | -60.313369 | 0.0 | 0.0 | 0.0 | 0.0 | -7.248865 | 1.801999e-10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.140410 | 0.140955 | 0.142748 | 0.144137 | 0.144373 | 0.144115 | 0.143260 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.428571 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.571429 | 0.714286 | 0.857143 | 1.0 | 0.693147 | 1.039721 | 1.039721 | 1.386294 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 |
df_features.reset_index(inplace=True)
print(df_features.shape)
df_features.head()
(3295, 308)
level_0 | level_1 | Close__variance_larger_than_standard_deviation | Close__has_duplicate_max | Close__has_duplicate_min | Close__has_duplicate | Close__sum_values | Close__abs_energy | Close__mean_abs_change | Close__mean_change | Close__mean_second_derivative_central | Close__median | Close__mean | Close__length | Close__standard_deviation | Close__variation_coefficient | Close__variance | Close__skewness | Close__kurtosis | Close__absolute_sum_of_changes | Close__longest_strike_below_mean | Close__longest_strike_above_mean | Close__count_above_mean | Close__count_below_mean | Close__last_location_of_maximum | Close__first_location_of_maximum | Close__last_location_of_minimum | Close__first_location_of_minimum | Close__percentage_of_reoccurring_values_to_all_values | Close__percentage_of_reoccurring_datapoints_to_all_datapoints | Close__sum_of_reoccurring_values | Close__sum_of_reoccurring_data_points | Close__ratio_value_number_to_time_series_length | Close__maximum | Close__minimum | Close__benford_correlation | Close__time_reversal_asymmetry_statistic__lag_1 | Close__time_reversal_asymmetry_statistic__lag_2 | Close__time_reversal_asymmetry_statistic__lag_3 | Close__c3__lag_1 | Close__c3__lag_2 | Close__c3__lag_3 | Close__cid_ce__normalize_True | Close__cid_ce__normalize_False | Close__symmetry_looking__r_0.0 | Close__symmetry_looking__r_0.05 | Close__symmetry_looking__r_0.1 | Close__symmetry_looking__r_0.15000000000000002 | Close__symmetry_looking__r_0.2 | Close__symmetry_looking__r_0.25 | Close__symmetry_looking__r_0.30000000000000004 | Close__symmetry_looking__r_0.35000000000000003 | Close__symmetry_looking__r_0.4 | Close__symmetry_looking__r_0.45 | Close__symmetry_looking__r_0.5 | Close__symmetry_looking__r_0.55 | Close__symmetry_looking__r_0.6000000000000001 | Close__symmetry_looking__r_0.65 | Close__symmetry_looking__r_0.7000000000000001 | Close__symmetry_looking__r_0.75 | Close__symmetry_looking__r_0.8 | Close__symmetry_looking__r_0.8500000000000001 | Close__symmetry_looking__r_0.9 | Close__symmetry_looking__r_0.9500000000000001 | Close__large_standard_deviation__r_0.05 | Close__large_standard_deviation__r_0.1 | Close__large_standard_deviation__r_0.15000000000000002 | Close__large_standard_deviation__r_0.2 | Close__large_standard_deviation__r_0.25 | Close__large_standard_deviation__r_0.30000000000000004 | Close__large_standard_deviation__r_0.35000000000000003 | Close__large_standard_deviation__r_0.4 | Close__large_standard_deviation__r_0.45 | Close__large_standard_deviation__r_0.5 | Close__large_standard_deviation__r_0.55 | Close__large_standard_deviation__r_0.6000000000000001 | Close__large_standard_deviation__r_0.65 | Close__large_standard_deviation__r_0.7000000000000001 | Close__large_standard_deviation__r_0.75 | Close__large_standard_deviation__r_0.8 | Close__large_standard_deviation__r_0.8500000000000001 | Close__large_standard_deviation__r_0.9 | Close__large_standard_deviation__r_0.9500000000000001 | Close__quantile__q_0.1 | Close__quantile__q_0.2 | Close__quantile__q_0.3 | Close__quantile__q_0.4 | Close__quantile__q_0.6 | Close__quantile__q_0.7 | Close__quantile__q_0.8 | Close__quantile__q_0.9 | Close__autocorrelation__lag_0 | Close__autocorrelation__lag_1 | Close__autocorrelation__lag_2 | Close__autocorrelation__lag_3 | Close__autocorrelation__lag_4 | Close__autocorrelation__lag_5 | Close__autocorrelation__lag_6 | Close__agg_autocorrelation__f_agg_"mean"__maxlag_40 | Close__agg_autocorrelation__f_agg_"median"__maxlag_40 | Close__agg_autocorrelation__f_agg_"var"__maxlag_40 | Close__partial_autocorrelation__lag_0 | Close__partial_autocorrelation__lag_1 | Close__partial_autocorrelation__lag_2 | Close__number_cwt_peaks__n_1 | Close__number_cwt_peaks__n_5 | Close__number_peaks__n_1 | Close__number_peaks__n_3 | Close__number_peaks__n_5 | Close__number_peaks__n_10 | Close__number_peaks__n_50 | Close__binned_entropy__max_bins_10 | Close__index_mass_quantile__q_0.1 | Close__index_mass_quantile__q_0.2 | Close__index_mass_quantile__q_0.3 | Close__index_mass_quantile__q_0.4 | Close__index_mass_quantile__q_0.6 | Close__index_mass_quantile__q_0.7 | Close__index_mass_quantile__q_0.8 | Close__index_mass_quantile__q_0.9 | Close__cwt_coefficients__coeff_0__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_20__widths_(2, 5, 10, 20) | Close__spkt_welch_density__coeff_2 | Close__ar_coefficient__coeff_10__k_10 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.8 | Close__fft_coefficient__attr_"real"__coeff_0 | Close__fft_coefficient__attr_"real"__coeff_1 | Close__fft_coefficient__attr_"real"__coeff_2 | Close__fft_coefficient__attr_"real"__coeff_3 | Close__fft_coefficient__attr_"imag"__coeff_0 | Close__fft_coefficient__attr_"imag"__coeff_1 | Close__fft_coefficient__attr_"imag"__coeff_2 | Close__fft_coefficient__attr_"imag"__coeff_3 | Close__fft_coefficient__attr_"abs"__coeff_0 | Close__fft_coefficient__attr_"abs"__coeff_1 | Close__fft_coefficient__attr_"abs"__coeff_2 | Close__fft_coefficient__attr_"abs"__coeff_3 | Close__fft_coefficient__attr_"angle"__coeff_0 | Close__fft_coefficient__attr_"angle"__coeff_1 | Close__fft_coefficient__attr_"angle"__coeff_2 | Close__fft_coefficient__attr_"angle"__coeff_3 | Close__fft_aggregated__aggtype_"centroid" | Close__fft_aggregated__aggtype_"variance" | Close__value_count__value_0 | Close__value_count__value_1 | Close__value_count__value_-1 | Close__range_count__max_1__min_-1 | Close__range_count__max_0__min_1000000000000.0 | Close__range_count__max_1000000000000.0__min_0 | Close__approximate_entropy__m_2__r_0.1 | Close__approximate_entropy__m_2__r_0.3 | Close__approximate_entropy__m_2__r_0.5 | Close__approximate_entropy__m_2__r_0.7 | Close__approximate_entropy__m_2__r_0.9 | Close__friedrich_coefficients__coeff_0__m_3__r_30 | Close__friedrich_coefficients__coeff_1__m_3__r_30 | Close__friedrich_coefficients__coeff_2__m_3__r_30 | Close__friedrich_coefficients__coeff_3__m_3__r_30 | Close__max_langevin_fixed_point__m_3__r_30 | Close__linear_trend__attr_"pvalue" | Close__linear_trend__attr_"rvalue" | Close__linear_trend__attr_"intercept" | Close__linear_trend__attr_"slope" | Close__linear_trend__attr_"stderr" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"var" | Close__augmented_dickey_fuller__attr_"teststat"__autolag_"AIC" | Close__augmented_dickey_fuller__attr_"pvalue"__autolag_"AIC" | Close__augmented_dickey_fuller__attr_"usedlag"__autolag_"AIC" | Close__number_crossing_m__m_0 | Close__number_crossing_m__m_-1 | Close__number_crossing_m__m_1 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_0 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_1 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_2 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_3 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_4 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_5 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_6 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_7 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_8 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_9 | Close__ratio_beyond_r_sigma__r_0.5 | Close__ratio_beyond_r_sigma__r_1 | Close__ratio_beyond_r_sigma__r_1.5 | Close__ratio_beyond_r_sigma__r_2 | Close__ratio_beyond_r_sigma__r_2.5 | Close__ratio_beyond_r_sigma__r_3 | Close__ratio_beyond_r_sigma__r_5 | Close__ratio_beyond_r_sigma__r_6 | Close__ratio_beyond_r_sigma__r_7 | Close__ratio_beyond_r_sigma__r_10 | Close__count_above__t_0 | Close__count_below__t_0 | Close__lempel_ziv_complexity__bins_2 | Close__lempel_ziv_complexity__bins_3 | Close__lempel_ziv_complexity__bins_5 | Close__lempel_ziv_complexity__bins_10 | Close__lempel_ziv_complexity__bins_100 | Close__fourier_entropy__bins_2 | Close__fourier_entropy__bins_3 | Close__fourier_entropy__bins_5 | Close__fourier_entropy__bins_10 | Close__fourier_entropy__bins_100 | Close__permutation_entropy__dimension_3__tau_1 | Close__permutation_entropy__dimension_4__tau_1 | Close__permutation_entropy__dimension_5__tau_1 | Close__permutation_entropy__dimension_6__tau_1 | Close__permutation_entropy__dimension_7__tau_1 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2007-01-11 | 1.0 | 0.0 | 0.0 | 0.0 | 9908.269776 | 1.402496e+07 | 4.323324 | 1.203328 | 0.722998 | 1414.849976 | 1415.467111 | 7.0 | 4.326073 | 0.003056 | 18.714907 | 0.825436 | 0.679915 | 25.939942 | 4.0 | 2.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.428571 | 0.285714 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1423.819946 | 1409.709961 | 0.864123 | 3.001703e+06 | 8.194405e+06 | 2.897416e+07 | 2.827448e+09 | 2.829842e+09 | 2.849675e+09 | 3.064915 | 13.259045 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1415.899976 | 1416.947974 | 1417.991968 | 1420.531958 | 1.0 | 0.067474 | -0.226154 | -0.414267 | -0.955827 | 0.622428 | 0.505620 | -0.066788 | -0.079340 | 0.292871 | 1.0 | 0.067474 | -0.231761 | 1.0 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.945910 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1092.890232 | 1784.100473 | 1472.674315 | 1082.936512 | 1665.663395 | 2299.461895 | 1854.183876 | 1355.773566 | 1661.665582 | 2724.309499 | 2219.205011 | 1626.046175 | 1304.985330 | 3019.046500 | 2558.839384 | 1892.931325 | 1660.852236 | 2726.139942 | 2220.997060 | 1627.412356 | 1668.025296 | 2301.121766 | 1855.253095 | 1356.505531 | 1095.901518 | 1786.348989 | 1474.331060 | 1084.120946 | 0.221269 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 1.203328 | 27.852379 | 4.323324 | 10.609250 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 5.354980 | 13.068153 | 5.354980 | 13.068153 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 5.354980 | 13.068153 | 5.354980 | 13.068153 | 0.0 | 0.0 | 0.0 | 0.0 | 1.739990 | 0.000000 | 1.739990 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.0 | 9908.269776 | 14.942022 | 0.646814 | -11.623808 | 0.0 | 8.978838 | 3.683139 | -2.352630 | 9908.269776 | 17.432256 | 3.739503 | 11.859502 | 0.0 | 31.002157 | 80.039569 | -168.558043 | 0.006085 | 0.013958 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.182322 | 0.182322 | 0.231830 | 0.089726 | -0.172668 | 732.046794 | -1.034532e+06 | 4.873344e+08 | 1417.322689 | 0.540053 | 0.282010 | 1413.637116 | 0.609998 | 0.928076 | 1.0 | 1.0 | 1.0 | 1.0 | 1418.339966 | 1409.709961 | 1413.919971 | 9.777085 | 5.479980 | 5.140015 | 5.414990 | 10.338005 | 0.0 | 0.0 | 0.0 | 0.0 | -1.091160 | 7.185842e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143085 | 0.143436 | 0.141696 | 0.142326 | 0.142179 | 0.142731 | 0.144547 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.428571 | 0.714286 | 0.857143 | 0.857143 | 1.0 | 0.562335 | 1.039721 | 1.386294 | 1.386294 | 1.386294 | 1.609438 | 1.386294 | 1.098612 | 0.693147 | -0.0 |
1 | 1 | 2007-01-12 | 1.0 | 0.0 | 0.0 | 0.0 | 9922.399780 | 1.406519e+07 | 5.184998 | 2.065002 | 1.554004 | 1414.849976 | 1417.485683 | 7.0 | 6.909142 | 0.004874 | 47.736244 | 1.029587 | 0.224793 | 31.109986 | 4.0 | 2.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1430.729980 | 1409.709961 | 0.864123 | 2.139352e+07 | 3.815444e+07 | 4.984751e+07 | 2.837403e+09 | 2.843172e+09 | 2.865540e+09 | 2.149330 | 14.850026 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1416.943970 | 1419.435962 | 1422.723950 | 1426.583960 | 1.0 | 0.474208 | -0.079115 | -0.443700 | -0.789298 | -1.021998 | 0.237019 | -0.270481 | -0.261408 | 0.285449 | 1.0 | 0.474208 | -0.392179 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.747868 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1090.635934 | 1782.415551 | 1471.453571 | 1082.067660 | 1661.665582 | 2298.240579 | 1853.598035 | 1355.414981 | 1657.553299 | 2725.314613 | 2220.831157 | 1627.382071 | 1304.767547 | 3022.801684 | 2562.376781 | 1895.610355 | 1668.025296 | 2731.440549 | 2224.506851 | 1629.836161 | 1676.664643 | 2308.552658 | 1860.878944 | 1360.556957 | 1103.962161 | 1792.975951 | 1479.182736 | 1087.580811 | 27.487946 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | -0.872498 | 22.317333 | 3.807495 | 8.581563 | 2.065002 | 32.489644 | 5.184998 | 9.869678 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 7.940002 | 1.060834 | 7.940002 | 1.060834 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 7.940002 | 1.060834 | 7.940002 | 1.060834 | 0.0 | 0.0 | 0.0 | 0.0 | 6.910034 | 0.000000 | 6.910034 | 0.000000 | 6.910034 | 0.0 | 6.910034 | 0.0 | 9922.399780 | 11.106173 | -6.878946 | -1.237236 | 0.0 | 28.327639 | 13.586757 | 3.207044 | 9922.399780 | 30.426998 | 15.228916 | 3.437424 | 0.0 | 68.591772 | 116.852996 | 111.095972 | 0.007140 | 0.012212 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.182322 | 0.089726 | 0.089726 | 0.033475 | 0.047758 | -202.842917 | 2.871778e+05 | -1.355243e+08 | 1422.707358 | 0.081909 | 0.696800 | 1410.264252 | 2.407144 | 1.108126 | 1.0 | 1.0 | 1.0 | 1.0 | 1418.339966 | 1409.709961 | 1413.569971 | 8.391082 | 12.390014 | 14.109985 | 13.704992 | 3.546061 | 0.0 | 0.0 | 0.0 | 0.0 | 0.055767 | 9.629081e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143026 | 0.141291 | 0.141919 | 0.141772 | 0.142323 | 0.144133 | 0.145536 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.857143 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 0.562335 | 1.039721 | 1.386294 | 1.332179 | 1.386294 | 1.098612 | 0.693147 | -0.0 |
2 | 1 | 2007-01-16 | 1.0 | 0.0 | 0.0 | 0.0 | 9935.959838 | 1.410384e+07 | 3.941671 | 3.698344 | -0.195996 | 1414.849976 | 1419.422834 | 7.0 | 8.576790 | 0.006042 | 73.561323 | 0.523817 | -1.913231 | 23.650025 | 4.0 | 3.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1409.709961 | 0.864123 | 3.238644e+07 | 6.952339e+07 | 8.921408e+07 | 2.855808e+09 | 2.857760e+09 | 2.855965e+09 | 1.415619 | 12.141470 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1420.231958 | 1425.201953 | 1429.347973 | 1431.197998 | 1.0 | 0.716435 | 0.196118 | -0.422348 | -0.944273 | -1.304766 | -1.647460 | -0.567716 | -0.683310 | 0.684084 | 1.0 | 0.716435 | -0.651629 | 2.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.549826 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1085.931822 | 1780.559154 | 1470.397627 | 1081.372885 | 1657.553299 | 2298.722358 | 1854.775111 | 1356.418464 | 1657.768570 | 2728.709010 | 2223.953383 | 1629.734931 | 1311.649402 | 3028.344900 | 2566.165750 | 1898.253491 | 1676.664643 | 2739.223354 | 2230.434674 | 1634.111115 | 1685.200230 | 2315.606676 | 1866.046736 | 1364.242889 | 1106.802728 | 1799.217911 | 1484.339382 | 1091.370113 | 55.018717 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 3.527496 | 12.131199 | 3.892487 | 9.422976 | 3.698344 | 10.891468 | 3.941671 | 9.032446 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 5.683349 | 10.892185 | 5.683349 | 10.892185 | 0.0 | 0.0 | 0.0 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 5.683349 | 10.892185 | 5.683349 | 10.892185 | 0.0 | 0.0 | 0.0 | 0.0 | 4.040039 | 8.236871 | 4.040039 | 8.236871 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9935.959838 | -6.768296 | -14.732796 | -12.493963 | 0.0 | 36.946830 | 3.490265 | 2.457225 | 9935.959838 | 37.561657 | 15.140582 | 12.733305 | 0.0 | 100.380922 | 166.672088 | 168.873476 | 0.010603 | 0.021157 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.089726 | 0.089726 | 0.320775 | -0.002624 | 11.124914 | -1.572176e+04 | 7.405715e+06 | 1431.283960 | 0.001050 | 0.949907 | 1407.202101 | 4.073578 | 0.599382 | 1.0 | 1.0 | 1.0 | -1.0 | 1423.819946 | 1409.709961 | 1414.665967 | 23.651702 | 8.080078 | 21.020019 | 16.649035 | -23.309451 | 0.0 | 0.0 | 0.0 | 0.0 | 0.042121 | 9.618799e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.140904 | 0.141530 | 0.141384 | 0.141933 | 0.143738 | 0.145137 | 0.145374 | 0.0 | 0.0 | 0.0 | 1.000000 | 0.428571 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 1.039721 | 1.039721 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 |
3 | 1 | 2007-01-17 | 1.0 | 0.0 | 0.0 | 0.0 | 9956.869872 | 1.416323e+07 | 3.633341 | 2.963338 | -0.055005 | 1423.819946 | 1422.409982 | 7.0 | 8.310960 | 0.005843 | 69.072059 | -0.133691 | -2.499627 | 21.800049 | 3.0 | 4.0 | 4.0 | 3.0 | 0.857143 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1412.109985 | 0.864123 | 3.038264e+07 | 7.210461e+07 | 7.198378e+07 | 2.879481e+09 | 2.878297e+09 | 2.877878e+09 | 1.419898 | 11.800713 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1412.547974 | 1413.241968 | 1414.447974 | 1418.437964 | 1427.899975 | 1430.641992 | 1430.707983 | 1431.197998 | 1.0 | 0.806842 | 0.221842 | -0.576783 | -1.155497 | -1.269565 | -1.137507 | -0.518445 | -0.857145 | 0.610178 | 1.0 | 0.806842 | -1.229636 | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.277034 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1085.322638 | 1784.190808 | 1473.906317 | 1084.043800 | 1657.768570 | 2304.712391 | 1860.124635 | 1360.420024 | 1662.502562 | 2736.041657 | 2229.801517 | 1633.995807 | 1320.607327 | 3035.862291 | 2571.788151 | 1902.288496 | 1685.200230 | 2745.892379 | 2235.272106 | 1637.552507 | 1687.521207 | 2321.381437 | 1870.857550 | 1367.784873 | 1104.260167 | 1803.086714 | 1488.228099 | 1094.349513 | 47.341055 | 0.0 | -0.729981 | 0.0 | 0.729981 | 0.0 | 1.005005 | 3.010176 | 1.734986 | 1.010035 | 3.659993 | 16.104710 | 4.146647 | 12.305577 | 3.659993 | 16.104710 | 4.146647 | 12.305577 | 2.963338 | 14.428099 | 3.633341 | 10.008302 | 0.0 | 0.0 | 0.0 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 3.942505 | 17.260759 | 4.582519 | 11.804620 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 2.266683 | 11.780831 | 3.120036 | 7.184060 | 0.0 | 0.0 | 0.0 | 0.0 | -0.054993 | 1.500714 | 1.225036 | 0.003024 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9956.869872 | -20.068966 | -4.777321 | -8.648768 | 0.0 | 34.092428 | 5.245705 | 1.437713 | 9956.869872 | 39.560802 | 7.095084 | 8.767452 | 0.0 | 120.483767 | 132.324471 | 170.561840 | 0.007996 | 0.014603 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.279777 | 0.279777 | 0.185620 | 0.007522 | -32.181593 | 4.589394e+04 | -2.181577e+07 | 1435.526774 | 0.001991 | 0.935083 | 1410.752821 | 3.885720 | 0.658664 | 1.0 | 1.0 | 1.0 | -1.0 | 1430.729980 | 1412.109985 | 1418.869971 | 52.676159 | 1.170044 | 18.510010 | 12.390039 | -52.266541 | 0.0 | 0.0 | 0.0 | 0.0 | -2.591408 | 9.478614e-02 | 1.0 | 0.0 | 0.0 | 0.0 | 0.140937 | 0.140791 | 0.141338 | 0.143136 | 0.144528 | 0.144765 | 0.144506 | 0.0 | 0.0 | 0.0 | 0.857143 | 0.571429 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 0.562335 | 1.039721 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 |
4 | 1 | 2007-01-18 | 1.0 | 0.0 | 0.0 | 0.0 | 9970.399901 | 1.420165e+07 | 4.220011 | 2.376668 | -0.698999 | 1426.369995 | 1424.342843 | 7.0 | 7.381920 | 0.005183 | 54.492749 | -0.800161 | -1.126892 | 25.320068 | 3.0 | 4.0 | 4.0 | 3.0 | 0.714286 | 0.571429 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1412.109985 | 0.864123 | 2.425488e+07 | 5.158183e+07 | 5.791130e+07 | 2.899317e+09 | 2.894320e+09 | 2.881764e+09 | 1.696231 | 12.521440 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1413.753980 | 1416.643970 | 1422.025952 | 1424.839966 | 1428.919995 | 1430.641992 | 1430.707983 | 1431.197998 | 1.0 | 0.691774 | -0.010184 | -0.643236 | -0.936480 | -0.881136 | -0.455067 | -0.372388 | -0.549152 | 0.320142 | 1.0 | 0.691774 | -0.937263 | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.475076 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1084.267375 | 1789.038417 | 1478.410191 | 1087.440602 | 1662.502562 | 2311.103630 | 1865.164953 | 1364.082935 | 1672.239492 | 2742.910041 | 2234.677082 | 1637.444076 | 1330.200668 | 3041.650078 | 2575.611511 | 1904.933203 | 1687.521207 | 2750.388873 | 2238.986047 | 1640.282559 | 1683.253483 | 2323.699027 | 1873.598022 | 1369.943117 | 1099.414296 | 1802.755734 | 1488.667354 | 1094.796802 | 22.515576 | 0.0 | 2.739991 | 0.0 | 2.739991 | 0.0 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 2.486654 | 29.160024 | 5.319987 | 7.041209 | 2.376668 | 20.482524 | 4.220011 | 8.322581 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | -4.25000 | 0.0 | 4.25000 | 0.0 | 0.637512 | 16.798215 | 3.402527 | 5.627448 | 0.0 | 0.0 | 0.0 | 0.0 | -4.25000 | 0.0 | 4.25000 | 0.0 | -1.453328 | 4.911162 | 2.233358 | 2.035439 | 0.0 | 0.0 | 0.0 | 0.0 | -0.054993 | 1.500714 | 1.225036 | 0.003024 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9970.399901 | -30.731494 | -7.061845 | -5.021665 | 0.0 | 16.143934 | 7.365980 | 0.822565 | 9970.399901 | 34.713849 | 10.204279 | 5.088588 | 0.0 | 152.286060 | 133.792396 | 170.697378 | 0.007024 | 0.012059 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.048728 | 0.045429 | 0.089726 | 0.009583 | -40.969186 | 5.837954e+04 | -2.772887e+07 | 1434.657342 | 0.031742 | 0.797316 | 1415.514256 | 2.942862 | 0.996268 | -1.0 | 1.0 | 1.0 | -1.0 | 1431.900024 | 1412.109985 | 1422.681982 | 64.828994 | -1.280029 | 14.260010 | 5.813013 | -60.313369 | 0.0 | 0.0 | 0.0 | 0.0 | -7.248865 | 1.801999e-10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.140410 | 0.140955 | 0.142748 | 0.144137 | 0.144373 | 0.144115 | 0.143260 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.428571 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.571429 | 0.714286 | 0.857143 | 1.0 | 0.693147 | 1.039721 | 1.039721 | 1.386294 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 |
df_features.rename(columns={'level_0':'id', 'level_1':'Date'}, inplace=True)
df_features.head()
id | Date | Close__variance_larger_than_standard_deviation | Close__has_duplicate_max | Close__has_duplicate_min | Close__has_duplicate | Close__sum_values | Close__abs_energy | Close__mean_abs_change | Close__mean_change | Close__mean_second_derivative_central | Close__median | Close__mean | Close__length | Close__standard_deviation | Close__variation_coefficient | Close__variance | Close__skewness | Close__kurtosis | Close__absolute_sum_of_changes | Close__longest_strike_below_mean | Close__longest_strike_above_mean | Close__count_above_mean | Close__count_below_mean | Close__last_location_of_maximum | Close__first_location_of_maximum | Close__last_location_of_minimum | Close__first_location_of_minimum | Close__percentage_of_reoccurring_values_to_all_values | Close__percentage_of_reoccurring_datapoints_to_all_datapoints | Close__sum_of_reoccurring_values | Close__sum_of_reoccurring_data_points | Close__ratio_value_number_to_time_series_length | Close__maximum | Close__minimum | Close__benford_correlation | Close__time_reversal_asymmetry_statistic__lag_1 | Close__time_reversal_asymmetry_statistic__lag_2 | Close__time_reversal_asymmetry_statistic__lag_3 | Close__c3__lag_1 | Close__c3__lag_2 | Close__c3__lag_3 | Close__cid_ce__normalize_True | Close__cid_ce__normalize_False | Close__symmetry_looking__r_0.0 | Close__symmetry_looking__r_0.05 | Close__symmetry_looking__r_0.1 | Close__symmetry_looking__r_0.15000000000000002 | Close__symmetry_looking__r_0.2 | Close__symmetry_looking__r_0.25 | Close__symmetry_looking__r_0.30000000000000004 | Close__symmetry_looking__r_0.35000000000000003 | Close__symmetry_looking__r_0.4 | Close__symmetry_looking__r_0.45 | Close__symmetry_looking__r_0.5 | Close__symmetry_looking__r_0.55 | Close__symmetry_looking__r_0.6000000000000001 | Close__symmetry_looking__r_0.65 | Close__symmetry_looking__r_0.7000000000000001 | Close__symmetry_looking__r_0.75 | Close__symmetry_looking__r_0.8 | Close__symmetry_looking__r_0.8500000000000001 | Close__symmetry_looking__r_0.9 | Close__symmetry_looking__r_0.9500000000000001 | Close__large_standard_deviation__r_0.05 | Close__large_standard_deviation__r_0.1 | Close__large_standard_deviation__r_0.15000000000000002 | Close__large_standard_deviation__r_0.2 | Close__large_standard_deviation__r_0.25 | Close__large_standard_deviation__r_0.30000000000000004 | Close__large_standard_deviation__r_0.35000000000000003 | Close__large_standard_deviation__r_0.4 | Close__large_standard_deviation__r_0.45 | Close__large_standard_deviation__r_0.5 | Close__large_standard_deviation__r_0.55 | Close__large_standard_deviation__r_0.6000000000000001 | Close__large_standard_deviation__r_0.65 | Close__large_standard_deviation__r_0.7000000000000001 | Close__large_standard_deviation__r_0.75 | Close__large_standard_deviation__r_0.8 | Close__large_standard_deviation__r_0.8500000000000001 | Close__large_standard_deviation__r_0.9 | Close__large_standard_deviation__r_0.9500000000000001 | Close__quantile__q_0.1 | Close__quantile__q_0.2 | Close__quantile__q_0.3 | Close__quantile__q_0.4 | Close__quantile__q_0.6 | Close__quantile__q_0.7 | Close__quantile__q_0.8 | Close__quantile__q_0.9 | Close__autocorrelation__lag_0 | Close__autocorrelation__lag_1 | Close__autocorrelation__lag_2 | Close__autocorrelation__lag_3 | Close__autocorrelation__lag_4 | Close__autocorrelation__lag_5 | Close__autocorrelation__lag_6 | Close__agg_autocorrelation__f_agg_"mean"__maxlag_40 | Close__agg_autocorrelation__f_agg_"median"__maxlag_40 | Close__agg_autocorrelation__f_agg_"var"__maxlag_40 | Close__partial_autocorrelation__lag_0 | Close__partial_autocorrelation__lag_1 | Close__partial_autocorrelation__lag_2 | Close__number_cwt_peaks__n_1 | Close__number_cwt_peaks__n_5 | Close__number_peaks__n_1 | Close__number_peaks__n_3 | Close__number_peaks__n_5 | Close__number_peaks__n_10 | Close__number_peaks__n_50 | Close__binned_entropy__max_bins_10 | Close__index_mass_quantile__q_0.1 | Close__index_mass_quantile__q_0.2 | Close__index_mass_quantile__q_0.3 | Close__index_mass_quantile__q_0.4 | Close__index_mass_quantile__q_0.6 | Close__index_mass_quantile__q_0.7 | Close__index_mass_quantile__q_0.8 | Close__index_mass_quantile__q_0.9 | Close__cwt_coefficients__coeff_0__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_20__widths_(2, 5, 10, 20) | Close__spkt_welch_density__coeff_2 | Close__ar_coefficient__coeff_10__k_10 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.8 | Close__fft_coefficient__attr_"real"__coeff_0 | Close__fft_coefficient__attr_"real"__coeff_1 | Close__fft_coefficient__attr_"real"__coeff_2 | Close__fft_coefficient__attr_"real"__coeff_3 | Close__fft_coefficient__attr_"imag"__coeff_0 | Close__fft_coefficient__attr_"imag"__coeff_1 | Close__fft_coefficient__attr_"imag"__coeff_2 | Close__fft_coefficient__attr_"imag"__coeff_3 | Close__fft_coefficient__attr_"abs"__coeff_0 | Close__fft_coefficient__attr_"abs"__coeff_1 | Close__fft_coefficient__attr_"abs"__coeff_2 | Close__fft_coefficient__attr_"abs"__coeff_3 | Close__fft_coefficient__attr_"angle"__coeff_0 | Close__fft_coefficient__attr_"angle"__coeff_1 | Close__fft_coefficient__attr_"angle"__coeff_2 | Close__fft_coefficient__attr_"angle"__coeff_3 | Close__fft_aggregated__aggtype_"centroid" | Close__fft_aggregated__aggtype_"variance" | Close__value_count__value_0 | Close__value_count__value_1 | Close__value_count__value_-1 | Close__range_count__max_1__min_-1 | Close__range_count__max_0__min_1000000000000.0 | Close__range_count__max_1000000000000.0__min_0 | Close__approximate_entropy__m_2__r_0.1 | Close__approximate_entropy__m_2__r_0.3 | Close__approximate_entropy__m_2__r_0.5 | Close__approximate_entropy__m_2__r_0.7 | Close__approximate_entropy__m_2__r_0.9 | Close__friedrich_coefficients__coeff_0__m_3__r_30 | Close__friedrich_coefficients__coeff_1__m_3__r_30 | Close__friedrich_coefficients__coeff_2__m_3__r_30 | Close__friedrich_coefficients__coeff_3__m_3__r_30 | Close__max_langevin_fixed_point__m_3__r_30 | Close__linear_trend__attr_"pvalue" | Close__linear_trend__attr_"rvalue" | Close__linear_trend__attr_"intercept" | Close__linear_trend__attr_"slope" | Close__linear_trend__attr_"stderr" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"var" | Close__augmented_dickey_fuller__attr_"teststat"__autolag_"AIC" | Close__augmented_dickey_fuller__attr_"pvalue"__autolag_"AIC" | Close__augmented_dickey_fuller__attr_"usedlag"__autolag_"AIC" | Close__number_crossing_m__m_0 | Close__number_crossing_m__m_-1 | Close__number_crossing_m__m_1 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_0 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_1 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_2 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_3 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_4 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_5 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_6 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_7 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_8 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_9 | Close__ratio_beyond_r_sigma__r_0.5 | Close__ratio_beyond_r_sigma__r_1 | Close__ratio_beyond_r_sigma__r_1.5 | Close__ratio_beyond_r_sigma__r_2 | Close__ratio_beyond_r_sigma__r_2.5 | Close__ratio_beyond_r_sigma__r_3 | Close__ratio_beyond_r_sigma__r_5 | Close__ratio_beyond_r_sigma__r_6 | Close__ratio_beyond_r_sigma__r_7 | Close__ratio_beyond_r_sigma__r_10 | Close__count_above__t_0 | Close__count_below__t_0 | Close__lempel_ziv_complexity__bins_2 | Close__lempel_ziv_complexity__bins_3 | Close__lempel_ziv_complexity__bins_5 | Close__lempel_ziv_complexity__bins_10 | Close__lempel_ziv_complexity__bins_100 | Close__fourier_entropy__bins_2 | Close__fourier_entropy__bins_3 | Close__fourier_entropy__bins_5 | Close__fourier_entropy__bins_10 | Close__fourier_entropy__bins_100 | Close__permutation_entropy__dimension_3__tau_1 | Close__permutation_entropy__dimension_4__tau_1 | Close__permutation_entropy__dimension_5__tau_1 | Close__permutation_entropy__dimension_6__tau_1 | Close__permutation_entropy__dimension_7__tau_1 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2007-01-11 | 1.0 | 0.0 | 0.0 | 0.0 | 9908.269776 | 1.402496e+07 | 4.323324 | 1.203328 | 0.722998 | 1414.849976 | 1415.467111 | 7.0 | 4.326073 | 0.003056 | 18.714907 | 0.825436 | 0.679915 | 25.939942 | 4.0 | 2.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.428571 | 0.285714 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1423.819946 | 1409.709961 | 0.864123 | 3.001703e+06 | 8.194405e+06 | 2.897416e+07 | 2.827448e+09 | 2.829842e+09 | 2.849675e+09 | 3.064915 | 13.259045 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1415.899976 | 1416.947974 | 1417.991968 | 1420.531958 | 1.0 | 0.067474 | -0.226154 | -0.414267 | -0.955827 | 0.622428 | 0.505620 | -0.066788 | -0.079340 | 0.292871 | 1.0 | 0.067474 | -0.231761 | 1.0 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.945910 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1092.890232 | 1784.100473 | 1472.674315 | 1082.936512 | 1665.663395 | 2299.461895 | 1854.183876 | 1355.773566 | 1661.665582 | 2724.309499 | 2219.205011 | 1626.046175 | 1304.985330 | 3019.046500 | 2558.839384 | 1892.931325 | 1660.852236 | 2726.139942 | 2220.997060 | 1627.412356 | 1668.025296 | 2301.121766 | 1855.253095 | 1356.505531 | 1095.901518 | 1786.348989 | 1474.331060 | 1084.120946 | 0.221269 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 1.203328 | 27.852379 | 4.323324 | 10.609250 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 5.354980 | 13.068153 | 5.354980 | 13.068153 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 5.354980 | 13.068153 | 5.354980 | 13.068153 | 0.0 | 0.0 | 0.0 | 0.0 | 1.739990 | 0.000000 | 1.739990 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.0 | 9908.269776 | 14.942022 | 0.646814 | -11.623808 | 0.0 | 8.978838 | 3.683139 | -2.352630 | 9908.269776 | 17.432256 | 3.739503 | 11.859502 | 0.0 | 31.002157 | 80.039569 | -168.558043 | 0.006085 | 0.013958 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.182322 | 0.182322 | 0.231830 | 0.089726 | -0.172668 | 732.046794 | -1.034532e+06 | 4.873344e+08 | 1417.322689 | 0.540053 | 0.282010 | 1413.637116 | 0.609998 | 0.928076 | 1.0 | 1.0 | 1.0 | 1.0 | 1418.339966 | 1409.709961 | 1413.919971 | 9.777085 | 5.479980 | 5.140015 | 5.414990 | 10.338005 | 0.0 | 0.0 | 0.0 | 0.0 | -1.091160 | 7.185842e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143085 | 0.143436 | 0.141696 | 0.142326 | 0.142179 | 0.142731 | 0.144547 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.428571 | 0.714286 | 0.857143 | 0.857143 | 1.0 | 0.562335 | 1.039721 | 1.386294 | 1.386294 | 1.386294 | 1.609438 | 1.386294 | 1.098612 | 0.693147 | -0.0 |
1 | 1 | 2007-01-12 | 1.0 | 0.0 | 0.0 | 0.0 | 9922.399780 | 1.406519e+07 | 5.184998 | 2.065002 | 1.554004 | 1414.849976 | 1417.485683 | 7.0 | 6.909142 | 0.004874 | 47.736244 | 1.029587 | 0.224793 | 31.109986 | 4.0 | 2.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1430.729980 | 1409.709961 | 0.864123 | 2.139352e+07 | 3.815444e+07 | 4.984751e+07 | 2.837403e+09 | 2.843172e+09 | 2.865540e+09 | 2.149330 | 14.850026 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1416.943970 | 1419.435962 | 1422.723950 | 1426.583960 | 1.0 | 0.474208 | -0.079115 | -0.443700 | -0.789298 | -1.021998 | 0.237019 | -0.270481 | -0.261408 | 0.285449 | 1.0 | 0.474208 | -0.392179 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.747868 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1090.635934 | 1782.415551 | 1471.453571 | 1082.067660 | 1661.665582 | 2298.240579 | 1853.598035 | 1355.414981 | 1657.553299 | 2725.314613 | 2220.831157 | 1627.382071 | 1304.767547 | 3022.801684 | 2562.376781 | 1895.610355 | 1668.025296 | 2731.440549 | 2224.506851 | 1629.836161 | 1676.664643 | 2308.552658 | 1860.878944 | 1360.556957 | 1103.962161 | 1792.975951 | 1479.182736 | 1087.580811 | 27.487946 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | -0.872498 | 22.317333 | 3.807495 | 8.581563 | 2.065002 | 32.489644 | 5.184998 | 9.869678 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 7.940002 | 1.060834 | 7.940002 | 1.060834 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 7.940002 | 1.060834 | 7.940002 | 1.060834 | 0.0 | 0.0 | 0.0 | 0.0 | 6.910034 | 0.000000 | 6.910034 | 0.000000 | 6.910034 | 0.0 | 6.910034 | 0.0 | 9922.399780 | 11.106173 | -6.878946 | -1.237236 | 0.0 | 28.327639 | 13.586757 | 3.207044 | 9922.399780 | 30.426998 | 15.228916 | 3.437424 | 0.0 | 68.591772 | 116.852996 | 111.095972 | 0.007140 | 0.012212 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.182322 | 0.089726 | 0.089726 | 0.033475 | 0.047758 | -202.842917 | 2.871778e+05 | -1.355243e+08 | 1422.707358 | 0.081909 | 0.696800 | 1410.264252 | 2.407144 | 1.108126 | 1.0 | 1.0 | 1.0 | 1.0 | 1418.339966 | 1409.709961 | 1413.569971 | 8.391082 | 12.390014 | 14.109985 | 13.704992 | 3.546061 | 0.0 | 0.0 | 0.0 | 0.0 | 0.055767 | 9.629081e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143026 | 0.141291 | 0.141919 | 0.141772 | 0.142323 | 0.144133 | 0.145536 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.857143 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 0.562335 | 1.039721 | 1.386294 | 1.332179 | 1.386294 | 1.098612 | 0.693147 | -0.0 |
2 | 1 | 2007-01-16 | 1.0 | 0.0 | 0.0 | 0.0 | 9935.959838 | 1.410384e+07 | 3.941671 | 3.698344 | -0.195996 | 1414.849976 | 1419.422834 | 7.0 | 8.576790 | 0.006042 | 73.561323 | 0.523817 | -1.913231 | 23.650025 | 4.0 | 3.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1409.709961 | 0.864123 | 3.238644e+07 | 6.952339e+07 | 8.921408e+07 | 2.855808e+09 | 2.857760e+09 | 2.855965e+09 | 1.415619 | 12.141470 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1420.231958 | 1425.201953 | 1429.347973 | 1431.197998 | 1.0 | 0.716435 | 0.196118 | -0.422348 | -0.944273 | -1.304766 | -1.647460 | -0.567716 | -0.683310 | 0.684084 | 1.0 | 0.716435 | -0.651629 | 2.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.549826 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1085.931822 | 1780.559154 | 1470.397627 | 1081.372885 | 1657.553299 | 2298.722358 | 1854.775111 | 1356.418464 | 1657.768570 | 2728.709010 | 2223.953383 | 1629.734931 | 1311.649402 | 3028.344900 | 2566.165750 | 1898.253491 | 1676.664643 | 2739.223354 | 2230.434674 | 1634.111115 | 1685.200230 | 2315.606676 | 1866.046736 | 1364.242889 | 1106.802728 | 1799.217911 | 1484.339382 | 1091.370113 | 55.018717 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 3.527496 | 12.131199 | 3.892487 | 9.422976 | 3.698344 | 10.891468 | 3.941671 | 9.032446 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 5.683349 | 10.892185 | 5.683349 | 10.892185 | 0.0 | 0.0 | 0.0 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 5.683349 | 10.892185 | 5.683349 | 10.892185 | 0.0 | 0.0 | 0.0 | 0.0 | 4.040039 | 8.236871 | 4.040039 | 8.236871 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9935.959838 | -6.768296 | -14.732796 | -12.493963 | 0.0 | 36.946830 | 3.490265 | 2.457225 | 9935.959838 | 37.561657 | 15.140582 | 12.733305 | 0.0 | 100.380922 | 166.672088 | 168.873476 | 0.010603 | 0.021157 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.089726 | 0.089726 | 0.320775 | -0.002624 | 11.124914 | -1.572176e+04 | 7.405715e+06 | 1431.283960 | 0.001050 | 0.949907 | 1407.202101 | 4.073578 | 0.599382 | 1.0 | 1.0 | 1.0 | -1.0 | 1423.819946 | 1409.709961 | 1414.665967 | 23.651702 | 8.080078 | 21.020019 | 16.649035 | -23.309451 | 0.0 | 0.0 | 0.0 | 0.0 | 0.042121 | 9.618799e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.140904 | 0.141530 | 0.141384 | 0.141933 | 0.143738 | 0.145137 | 0.145374 | 0.0 | 0.0 | 0.0 | 1.000000 | 0.428571 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 1.039721 | 1.039721 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 |
3 | 1 | 2007-01-17 | 1.0 | 0.0 | 0.0 | 0.0 | 9956.869872 | 1.416323e+07 | 3.633341 | 2.963338 | -0.055005 | 1423.819946 | 1422.409982 | 7.0 | 8.310960 | 0.005843 | 69.072059 | -0.133691 | -2.499627 | 21.800049 | 3.0 | 4.0 | 4.0 | 3.0 | 0.857143 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1412.109985 | 0.864123 | 3.038264e+07 | 7.210461e+07 | 7.198378e+07 | 2.879481e+09 | 2.878297e+09 | 2.877878e+09 | 1.419898 | 11.800713 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1412.547974 | 1413.241968 | 1414.447974 | 1418.437964 | 1427.899975 | 1430.641992 | 1430.707983 | 1431.197998 | 1.0 | 0.806842 | 0.221842 | -0.576783 | -1.155497 | -1.269565 | -1.137507 | -0.518445 | -0.857145 | 0.610178 | 1.0 | 0.806842 | -1.229636 | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.277034 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1085.322638 | 1784.190808 | 1473.906317 | 1084.043800 | 1657.768570 | 2304.712391 | 1860.124635 | 1360.420024 | 1662.502562 | 2736.041657 | 2229.801517 | 1633.995807 | 1320.607327 | 3035.862291 | 2571.788151 | 1902.288496 | 1685.200230 | 2745.892379 | 2235.272106 | 1637.552507 | 1687.521207 | 2321.381437 | 1870.857550 | 1367.784873 | 1104.260167 | 1803.086714 | 1488.228099 | 1094.349513 | 47.341055 | 0.0 | -0.729981 | 0.0 | 0.729981 | 0.0 | 1.005005 | 3.010176 | 1.734986 | 1.010035 | 3.659993 | 16.104710 | 4.146647 | 12.305577 | 3.659993 | 16.104710 | 4.146647 | 12.305577 | 2.963338 | 14.428099 | 3.633341 | 10.008302 | 0.0 | 0.0 | 0.0 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 3.942505 | 17.260759 | 4.582519 | 11.804620 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 2.266683 | 11.780831 | 3.120036 | 7.184060 | 0.0 | 0.0 | 0.0 | 0.0 | -0.054993 | 1.500714 | 1.225036 | 0.003024 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9956.869872 | -20.068966 | -4.777321 | -8.648768 | 0.0 | 34.092428 | 5.245705 | 1.437713 | 9956.869872 | 39.560802 | 7.095084 | 8.767452 | 0.0 | 120.483767 | 132.324471 | 170.561840 | 0.007996 | 0.014603 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.279777 | 0.279777 | 0.185620 | 0.007522 | -32.181593 | 4.589394e+04 | -2.181577e+07 | 1435.526774 | 0.001991 | 0.935083 | 1410.752821 | 3.885720 | 0.658664 | 1.0 | 1.0 | 1.0 | -1.0 | 1430.729980 | 1412.109985 | 1418.869971 | 52.676159 | 1.170044 | 18.510010 | 12.390039 | -52.266541 | 0.0 | 0.0 | 0.0 | 0.0 | -2.591408 | 9.478614e-02 | 1.0 | 0.0 | 0.0 | 0.0 | 0.140937 | 0.140791 | 0.141338 | 0.143136 | 0.144528 | 0.144765 | 0.144506 | 0.0 | 0.0 | 0.0 | 0.857143 | 0.571429 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 0.562335 | 1.039721 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 |
4 | 1 | 2007-01-18 | 1.0 | 0.0 | 0.0 | 0.0 | 9970.399901 | 1.420165e+07 | 4.220011 | 2.376668 | -0.698999 | 1426.369995 | 1424.342843 | 7.0 | 7.381920 | 0.005183 | 54.492749 | -0.800161 | -1.126892 | 25.320068 | 3.0 | 4.0 | 4.0 | 3.0 | 0.714286 | 0.571429 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1412.109985 | 0.864123 | 2.425488e+07 | 5.158183e+07 | 5.791130e+07 | 2.899317e+09 | 2.894320e+09 | 2.881764e+09 | 1.696231 | 12.521440 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1413.753980 | 1416.643970 | 1422.025952 | 1424.839966 | 1428.919995 | 1430.641992 | 1430.707983 | 1431.197998 | 1.0 | 0.691774 | -0.010184 | -0.643236 | -0.936480 | -0.881136 | -0.455067 | -0.372388 | -0.549152 | 0.320142 | 1.0 | 0.691774 | -0.937263 | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.475076 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1084.267375 | 1789.038417 | 1478.410191 | 1087.440602 | 1662.502562 | 2311.103630 | 1865.164953 | 1364.082935 | 1672.239492 | 2742.910041 | 2234.677082 | 1637.444076 | 1330.200668 | 3041.650078 | 2575.611511 | 1904.933203 | 1687.521207 | 2750.388873 | 2238.986047 | 1640.282559 | 1683.253483 | 2323.699027 | 1873.598022 | 1369.943117 | 1099.414296 | 1802.755734 | 1488.667354 | 1094.796802 | 22.515576 | 0.0 | 2.739991 | 0.0 | 2.739991 | 0.0 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 2.486654 | 29.160024 | 5.319987 | 7.041209 | 2.376668 | 20.482524 | 4.220011 | 8.322581 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | -4.25000 | 0.0 | 4.25000 | 0.0 | 0.637512 | 16.798215 | 3.402527 | 5.627448 | 0.0 | 0.0 | 0.0 | 0.0 | -4.25000 | 0.0 | 4.25000 | 0.0 | -1.453328 | 4.911162 | 2.233358 | 2.035439 | 0.0 | 0.0 | 0.0 | 0.0 | -0.054993 | 1.500714 | 1.225036 | 0.003024 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9970.399901 | -30.731494 | -7.061845 | -5.021665 | 0.0 | 16.143934 | 7.365980 | 0.822565 | 9970.399901 | 34.713849 | 10.204279 | 5.088588 | 0.0 | 152.286060 | 133.792396 | 170.697378 | 0.007024 | 0.012059 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.048728 | 0.045429 | 0.089726 | 0.009583 | -40.969186 | 5.837954e+04 | -2.772887e+07 | 1434.657342 | 0.031742 | 0.797316 | 1415.514256 | 2.942862 | 0.996268 | -1.0 | 1.0 | 1.0 | -1.0 | 1431.900024 | 1412.109985 | 1422.681982 | 64.828994 | -1.280029 | 14.260010 | 5.813013 | -60.313369 | 0.0 | 0.0 | 0.0 | 0.0 | -7.248865 | 1.801999e-10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.140410 | 0.140955 | 0.142748 | 0.144137 | 0.144373 | 0.144115 | 0.143260 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.428571 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.571429 | 0.714286 | 0.857143 | 1.0 | 0.693147 | 1.039721 | 1.039721 | 1.386294 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 |
df['next_close']=df['Close'].shift(-1)
df.head()
Date | Close | id | next_close | |
---|---|---|---|---|
0 | 2007-01-03 | 1416.599976 | 1 | 1418.339966 |
1 | 2007-01-04 | 1418.339966 | 1 | 1409.709961 |
2 | 2007-01-05 | 1409.709961 | 1 | 1412.839966 |
3 | 2007-01-08 | 1412.839966 | 1 | 1412.109985 |
4 | 2007-01-09 | 1412.109985 | 1 | 1414.849976 |
df['delta'] = (df['next_close'] - df['Close'])/df['Close']*100
df[df['delta']>=5]
Date | Close | id | next_close | delta | |
---|---|---|---|---|---|
438 | 2008-09-29 | 1106.420044 | 1 | 1166.359985 | 5.417467 |
447 | 2008-10-10 | 899.219971 | 1 | 1003.349976 | 11.580037 |
458 | 2008-10-27 | 848.919983 | 1 | 940.510010 | 10.789006 |
470 | 2008-11-12 | 852.299988 | 1 | 911.289978 | 6.921271 |
476 | 2008-11-20 | 752.440002 | 1 | 800.030029 | 6.324760 |
477 | 2008-11-21 | 800.030029 | 1 | 851.809998 | 6.472253 |
492 | 2008-12-15 | 868.570007 | 1 | 913.179993 | 5.136027 |
548 | 2009-03-09 | 676.530029 | 1 | 719.599976 | 6.366302 |
557 | 2009-03-20 | 768.539978 | 1 | 822.919983 | 7.075755 |
df['target'] = 0
df.loc[df['delta']>=2, 'target'] = 1
df['target'].value_counts()
0 3189
1 112
Name: target, dtype: int64
print(df_features.shape)
df_features = df[['Date', 'target', 'Close']].merge(df_features, on='Date', how='inner')
print(df_features.shape)
(3295, 308)
(3295, 310)
from tsfresh import select_features
df_features.head()
Date | target | Close | id | Close__variance_larger_than_standard_deviation | Close__has_duplicate_max | Close__has_duplicate_min | Close__has_duplicate | Close__sum_values | Close__abs_energy | Close__mean_abs_change | Close__mean_change | Close__mean_second_derivative_central | Close__median | Close__mean | Close__length | Close__standard_deviation | Close__variation_coefficient | Close__variance | Close__skewness | Close__kurtosis | Close__absolute_sum_of_changes | Close__longest_strike_below_mean | Close__longest_strike_above_mean | Close__count_above_mean | Close__count_below_mean | Close__last_location_of_maximum | Close__first_location_of_maximum | Close__last_location_of_minimum | Close__first_location_of_minimum | Close__percentage_of_reoccurring_values_to_all_values | Close__percentage_of_reoccurring_datapoints_to_all_datapoints | Close__sum_of_reoccurring_values | Close__sum_of_reoccurring_data_points | Close__ratio_value_number_to_time_series_length | Close__maximum | Close__minimum | Close__benford_correlation | Close__time_reversal_asymmetry_statistic__lag_1 | Close__time_reversal_asymmetry_statistic__lag_2 | Close__time_reversal_asymmetry_statistic__lag_3 | Close__c3__lag_1 | Close__c3__lag_2 | Close__c3__lag_3 | Close__cid_ce__normalize_True | Close__cid_ce__normalize_False | Close__symmetry_looking__r_0.0 | Close__symmetry_looking__r_0.05 | Close__symmetry_looking__r_0.1 | Close__symmetry_looking__r_0.15000000000000002 | Close__symmetry_looking__r_0.2 | Close__symmetry_looking__r_0.25 | Close__symmetry_looking__r_0.30000000000000004 | Close__symmetry_looking__r_0.35000000000000003 | Close__symmetry_looking__r_0.4 | Close__symmetry_looking__r_0.45 | Close__symmetry_looking__r_0.5 | Close__symmetry_looking__r_0.55 | Close__symmetry_looking__r_0.6000000000000001 | Close__symmetry_looking__r_0.65 | Close__symmetry_looking__r_0.7000000000000001 | Close__symmetry_looking__r_0.75 | Close__symmetry_looking__r_0.8 | Close__symmetry_looking__r_0.8500000000000001 | Close__symmetry_looking__r_0.9 | Close__symmetry_looking__r_0.9500000000000001 | Close__large_standard_deviation__r_0.05 | Close__large_standard_deviation__r_0.1 | Close__large_standard_deviation__r_0.15000000000000002 | Close__large_standard_deviation__r_0.2 | Close__large_standard_deviation__r_0.25 | Close__large_standard_deviation__r_0.30000000000000004 | Close__large_standard_deviation__r_0.35000000000000003 | Close__large_standard_deviation__r_0.4 | Close__large_standard_deviation__r_0.45 | Close__large_standard_deviation__r_0.5 | Close__large_standard_deviation__r_0.55 | Close__large_standard_deviation__r_0.6000000000000001 | Close__large_standard_deviation__r_0.65 | Close__large_standard_deviation__r_0.7000000000000001 | Close__large_standard_deviation__r_0.75 | Close__large_standard_deviation__r_0.8 | Close__large_standard_deviation__r_0.8500000000000001 | Close__large_standard_deviation__r_0.9 | Close__large_standard_deviation__r_0.9500000000000001 | Close__quantile__q_0.1 | Close__quantile__q_0.2 | Close__quantile__q_0.3 | Close__quantile__q_0.4 | Close__quantile__q_0.6 | Close__quantile__q_0.7 | Close__quantile__q_0.8 | Close__quantile__q_0.9 | Close__autocorrelation__lag_0 | Close__autocorrelation__lag_1 | Close__autocorrelation__lag_2 | Close__autocorrelation__lag_3 | Close__autocorrelation__lag_4 | Close__autocorrelation__lag_5 | Close__autocorrelation__lag_6 | Close__agg_autocorrelation__f_agg_"mean"__maxlag_40 | Close__agg_autocorrelation__f_agg_"median"__maxlag_40 | Close__agg_autocorrelation__f_agg_"var"__maxlag_40 | Close__partial_autocorrelation__lag_0 | Close__partial_autocorrelation__lag_1 | Close__partial_autocorrelation__lag_2 | Close__number_cwt_peaks__n_1 | Close__number_cwt_peaks__n_5 | Close__number_peaks__n_1 | Close__number_peaks__n_3 | Close__number_peaks__n_5 | Close__number_peaks__n_10 | Close__number_peaks__n_50 | Close__binned_entropy__max_bins_10 | Close__index_mass_quantile__q_0.1 | Close__index_mass_quantile__q_0.2 | Close__index_mass_quantile__q_0.3 | Close__index_mass_quantile__q_0.4 | Close__index_mass_quantile__q_0.6 | Close__index_mass_quantile__q_0.7 | Close__index_mass_quantile__q_0.8 | Close__index_mass_quantile__q_0.9 | Close__cwt_coefficients__coeff_0__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_20__widths_(2, 5, 10, 20) | Close__spkt_welch_density__coeff_2 | Close__ar_coefficient__coeff_10__k_10 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.2__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.6 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.8 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.8 | Close__fft_coefficient__attr_"real"__coeff_0 | Close__fft_coefficient__attr_"real"__coeff_1 | Close__fft_coefficient__attr_"real"__coeff_2 | Close__fft_coefficient__attr_"real"__coeff_3 | Close__fft_coefficient__attr_"imag"__coeff_0 | Close__fft_coefficient__attr_"imag"__coeff_1 | Close__fft_coefficient__attr_"imag"__coeff_2 | Close__fft_coefficient__attr_"imag"__coeff_3 | Close__fft_coefficient__attr_"abs"__coeff_0 | Close__fft_coefficient__attr_"abs"__coeff_1 | Close__fft_coefficient__attr_"abs"__coeff_2 | Close__fft_coefficient__attr_"abs"__coeff_3 | Close__fft_coefficient__attr_"angle"__coeff_0 | Close__fft_coefficient__attr_"angle"__coeff_1 | Close__fft_coefficient__attr_"angle"__coeff_2 | Close__fft_coefficient__attr_"angle"__coeff_3 | Close__fft_aggregated__aggtype_"centroid" | Close__fft_aggregated__aggtype_"variance" | Close__value_count__value_0 | Close__value_count__value_1 | Close__value_count__value_-1 | Close__range_count__max_1__min_-1 | Close__range_count__max_0__min_1000000000000.0 | Close__range_count__max_1000000000000.0__min_0 | Close__approximate_entropy__m_2__r_0.1 | Close__approximate_entropy__m_2__r_0.3 | Close__approximate_entropy__m_2__r_0.5 | Close__approximate_entropy__m_2__r_0.7 | Close__approximate_entropy__m_2__r_0.9 | Close__friedrich_coefficients__coeff_0__m_3__r_30 | Close__friedrich_coefficients__coeff_1__m_3__r_30 | Close__friedrich_coefficients__coeff_2__m_3__r_30 | Close__friedrich_coefficients__coeff_3__m_3__r_30 | Close__max_langevin_fixed_point__m_3__r_30 | Close__linear_trend__attr_"pvalue" | Close__linear_trend__attr_"rvalue" | Close__linear_trend__attr_"intercept" | Close__linear_trend__attr_"slope" | Close__linear_trend__attr_"stderr" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"max" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"min" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"stderr"__chunk_len_5__f_agg_"var" | Close__augmented_dickey_fuller__attr_"teststat"__autolag_"AIC" | Close__augmented_dickey_fuller__attr_"pvalue"__autolag_"AIC" | Close__augmented_dickey_fuller__attr_"usedlag"__autolag_"AIC" | Close__number_crossing_m__m_0 | Close__number_crossing_m__m_-1 | Close__number_crossing_m__m_1 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_0 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_1 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_2 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_3 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_4 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_5 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_6 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_7 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_8 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_9 | Close__ratio_beyond_r_sigma__r_0.5 | Close__ratio_beyond_r_sigma__r_1 | Close__ratio_beyond_r_sigma__r_1.5 | Close__ratio_beyond_r_sigma__r_2 | Close__ratio_beyond_r_sigma__r_2.5 | Close__ratio_beyond_r_sigma__r_3 | Close__ratio_beyond_r_sigma__r_5 | Close__ratio_beyond_r_sigma__r_6 | Close__ratio_beyond_r_sigma__r_7 | Close__ratio_beyond_r_sigma__r_10 | Close__count_above__t_0 | Close__count_below__t_0 | Close__lempel_ziv_complexity__bins_2 | Close__lempel_ziv_complexity__bins_3 | Close__lempel_ziv_complexity__bins_5 | Close__lempel_ziv_complexity__bins_10 | Close__lempel_ziv_complexity__bins_100 | Close__fourier_entropy__bins_2 | Close__fourier_entropy__bins_3 | Close__fourier_entropy__bins_5 | Close__fourier_entropy__bins_10 | Close__fourier_entropy__bins_100 | Close__permutation_entropy__dimension_3__tau_1 | Close__permutation_entropy__dimension_4__tau_1 | Close__permutation_entropy__dimension_5__tau_1 | Close__permutation_entropy__dimension_6__tau_1 | Close__permutation_entropy__dimension_7__tau_1 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2007-01-11 | 0 | 1423.819946 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 9908.269776 | 1.402496e+07 | 4.323324 | 1.203328 | 0.722998 | 1414.849976 | 1415.467111 | 7.0 | 4.326073 | 0.003056 | 18.714907 | 0.825436 | 0.679915 | 25.939942 | 4.0 | 2.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.428571 | 0.285714 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1423.819946 | 1409.709961 | 0.864123 | 3.001703e+06 | 8.194405e+06 | 2.897416e+07 | 2.827448e+09 | 2.829842e+09 | 2.849675e+09 | 3.064915 | 13.259045 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1415.899976 | 1416.947974 | 1417.991968 | 1420.531958 | 1.0 | 0.067474 | -0.226154 | -0.414267 | -0.955827 | 0.622428 | 0.505620 | -0.066788 | -0.079340 | 0.292871 | 1.0 | 0.067474 | -0.231761 | 1.0 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.945910 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1092.890232 | 1784.100473 | 1472.674315 | 1082.936512 | 1665.663395 | 2299.461895 | 1854.183876 | 1355.773566 | 1661.665582 | 2724.309499 | 2219.205011 | 1626.046175 | 1304.985330 | 3019.046500 | 2558.839384 | 1892.931325 | 1660.852236 | 2726.139942 | 2220.997060 | 1627.412356 | 1668.025296 | 2301.121766 | 1855.253095 | 1356.505531 | 1095.901518 | 1786.348989 | 1474.331060 | 1084.120946 | 0.221269 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 1.203328 | 27.852379 | 4.323324 | 10.609250 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 5.354980 | 13.068153 | 5.354980 | 13.068153 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 5.354980 | 13.068153 | 5.354980 | 13.068153 | 0.0 | 0.0 | 0.0 | 0.0 | 1.739990 | 0.000000 | 1.739990 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.0 | 9908.269776 | 14.942022 | 0.646814 | -11.623808 | 0.0 | 8.978838 | 3.683139 | -2.352630 | 9908.269776 | 17.432256 | 3.739503 | 11.859502 | 0.0 | 31.002157 | 80.039569 | -168.558043 | 0.006085 | 0.013958 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.182322 | 0.182322 | 0.231830 | 0.089726 | -0.172668 | 732.046794 | -1.034532e+06 | 4.873344e+08 | 1417.322689 | 0.540053 | 0.282010 | 1413.637116 | 0.609998 | 0.928076 | 1.0 | 1.0 | 1.0 | 1.0 | 1418.339966 | 1409.709961 | 1413.919971 | 9.777085 | 5.479980 | 5.140015 | 5.414990 | 10.338005 | 0.0 | 0.0 | 0.0 | 0.0 | -1.091160 | 7.185842e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143085 | 0.143436 | 0.141696 | 0.142326 | 0.142179 | 0.142731 | 0.144547 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.428571 | 0.714286 | 0.857143 | 0.857143 | 1.0 | 0.562335 | 1.039721 | 1.386294 | 1.386294 | 1.386294 | 1.609438 | 1.386294 | 1.098612 | 0.693147 | -0.0 |
1 | 2007-01-12 | 0 | 1430.729980 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 9922.399780 | 1.406519e+07 | 5.184998 | 2.065002 | 1.554004 | 1414.849976 | 1417.485683 | 7.0 | 6.909142 | 0.004874 | 47.736244 | 1.029587 | 0.224793 | 31.109986 | 4.0 | 2.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1430.729980 | 1409.709961 | 0.864123 | 2.139352e+07 | 3.815444e+07 | 4.984751e+07 | 2.837403e+09 | 2.843172e+09 | 2.865540e+09 | 2.149330 | 14.850026 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1416.943970 | 1419.435962 | 1422.723950 | 1426.583960 | 1.0 | 0.474208 | -0.079115 | -0.443700 | -0.789298 | -1.021998 | 0.237019 | -0.270481 | -0.261408 | 0.285449 | 1.0 | 0.474208 | -0.392179 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.747868 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1090.635934 | 1782.415551 | 1471.453571 | 1082.067660 | 1661.665582 | 2298.240579 | 1853.598035 | 1355.414981 | 1657.553299 | 2725.314613 | 2220.831157 | 1627.382071 | 1304.767547 | 3022.801684 | 2562.376781 | 1895.610355 | 1668.025296 | 2731.440549 | 2224.506851 | 1629.836161 | 1676.664643 | 2308.552658 | 1860.878944 | 1360.556957 | 1103.962161 | 1792.975951 | 1479.182736 | 1087.580811 | 27.487946 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | -0.872498 | 22.317333 | 3.807495 | 8.581563 | 2.065002 | 32.489644 | 5.184998 | 9.869678 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 7.940002 | 1.060834 | 7.940002 | 1.060834 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 7.940002 | 1.060834 | 7.940002 | 1.060834 | 0.0 | 0.0 | 0.0 | 0.0 | 6.910034 | 0.000000 | 6.910034 | 0.000000 | 6.910034 | 0.0 | 6.910034 | 0.0 | 9922.399780 | 11.106173 | -6.878946 | -1.237236 | 0.0 | 28.327639 | 13.586757 | 3.207044 | 9922.399780 | 30.426998 | 15.228916 | 3.437424 | 0.0 | 68.591772 | 116.852996 | 111.095972 | 0.007140 | 0.012212 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.182322 | 0.089726 | 0.089726 | 0.033475 | 0.047758 | -202.842917 | 2.871778e+05 | -1.355243e+08 | 1422.707358 | 0.081909 | 0.696800 | 1410.264252 | 2.407144 | 1.108126 | 1.0 | 1.0 | 1.0 | 1.0 | 1418.339966 | 1409.709961 | 1413.569971 | 8.391082 | 12.390014 | 14.109985 | 13.704992 | 3.546061 | 0.0 | 0.0 | 0.0 | 0.0 | 0.055767 | 9.629081e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.143026 | 0.141291 | 0.141919 | 0.141772 | 0.142323 | 0.144133 | 0.145536 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.857143 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 0.562335 | 1.039721 | 1.386294 | 1.332179 | 1.386294 | 1.098612 | 0.693147 | -0.0 |
2 | 2007-01-16 | 0 | 1431.900024 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 9935.959838 | 1.410384e+07 | 3.941671 | 3.698344 | -0.195996 | 1414.849976 | 1419.422834 | 7.0 | 8.576790 | 0.006042 | 73.561323 | 0.523817 | -1.913231 | 23.650025 | 4.0 | 3.0 | 3.0 | 4.0 | 1.000000 | 0.857143 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1409.709961 | 0.864123 | 3.238644e+07 | 6.952339e+07 | 8.921408e+07 | 2.855808e+09 | 2.857760e+09 | 2.855965e+09 | 1.415619 | 12.141470 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1411.149975 | 1412.255981 | 1412.693970 | 1413.643970 | 1420.231958 | 1425.201953 | 1429.347973 | 1431.197998 | 1.0 | 0.716435 | 0.196118 | -0.422348 | -0.944273 | -1.304766 | -1.647460 | -0.567716 | -0.683310 | 0.684084 | 1.0 | 0.716435 | -0.651629 | 2.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.549826 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1085.931822 | 1780.559154 | 1470.397627 | 1081.372885 | 1657.553299 | 2298.722358 | 1854.775111 | 1356.418464 | 1657.768570 | 2728.709010 | 2223.953383 | 1629.734931 | 1311.649402 | 3028.344900 | 2566.165750 | 1898.253491 | 1676.664643 | 2739.223354 | 2230.434674 | 1634.111115 | 1685.200230 | 2315.606676 | 1866.046736 | 1364.242889 | 1106.802728 | 1799.217911 | 1484.339382 | 1091.370113 | 55.018717 | 0.0 | 0.000000 | 0.0 | 0.000000 | 0.0 | 1.200012 | 3.724873 | 1.929993 | 1.440029 | 1.713338 | 3.010257 | 2.199992 | 1.105818 | 3.527496 | 12.131199 | 3.892487 | 9.422976 | 3.698344 | 10.891468 | 3.941671 | 9.032446 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 5.683349 | 10.892185 | 5.683349 | 10.892185 | 0.0 | 0.0 | 0.0 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 5.683349 | 10.892185 | 5.683349 | 10.892185 | 0.0 | 0.0 | 0.0 | 0.0 | 4.040039 | 8.236871 | 4.040039 | 8.236871 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9935.959838 | -6.768296 | -14.732796 | -12.493963 | 0.0 | 36.946830 | 3.490265 | 2.457225 | 9935.959838 | 37.561657 | 15.140582 | 12.733305 | 0.0 | 100.380922 | 166.672088 | 168.873476 | 0.010603 | 0.021157 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.089726 | 0.089726 | 0.320775 | -0.002624 | 11.124914 | -1.572176e+04 | 7.405715e+06 | 1431.283960 | 0.001050 | 0.949907 | 1407.202101 | 4.073578 | 0.599382 | 1.0 | 1.0 | 1.0 | -1.0 | 1423.819946 | 1409.709961 | 1414.665967 | 23.651702 | 8.080078 | 21.020019 | 16.649035 | -23.309451 | 0.0 | 0.0 | 0.0 | 0.0 | 0.042121 | 9.618799e-01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.140904 | 0.141530 | 0.141384 | 0.141933 | 0.143738 | 0.145137 | 0.145374 | 0.0 | 0.0 | 0.0 | 1.000000 | 0.428571 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 1.039721 | 1.039721 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 |
3 | 2007-01-17 | 0 | 1430.619995 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 9956.869872 | 1.416323e+07 | 3.633341 | 2.963338 | -0.055005 | 1423.819946 | 1422.409982 | 7.0 | 8.310960 | 0.005843 | 69.072059 | -0.133691 | -2.499627 | 21.800049 | 3.0 | 4.0 | 4.0 | 3.0 | 0.857143 | 0.714286 | 0.285714 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1412.109985 | 0.864123 | 3.038264e+07 | 7.210461e+07 | 7.198378e+07 | 2.879481e+09 | 2.878297e+09 | 2.877878e+09 | 1.419898 | 11.800713 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1412.547974 | 1413.241968 | 1414.447974 | 1418.437964 | 1427.899975 | 1430.641992 | 1430.707983 | 1431.197998 | 1.0 | 0.806842 | 0.221842 | -0.576783 | -1.155497 | -1.269565 | -1.137507 | -0.518445 | -0.857145 | 0.610178 | 1.0 | 0.806842 | -1.229636 | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.277034 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1085.322638 | 1784.190808 | 1473.906317 | 1084.043800 | 1657.768570 | 2304.712391 | 1860.124635 | 1360.420024 | 1662.502562 | 2736.041657 | 2229.801517 | 1633.995807 | 1320.607327 | 3035.862291 | 2571.788151 | 1902.288496 | 1685.200230 | 2745.892379 | 2235.272106 | 1637.552507 | 1687.521207 | 2321.381437 | 1870.857550 | 1367.784873 | 1104.260167 | 1803.086714 | 1488.228099 | 1094.349513 | 47.341055 | 0.0 | -0.729981 | 0.0 | 0.729981 | 0.0 | 1.005005 | 3.010176 | 1.734986 | 1.010035 | 3.659993 | 16.104710 | 4.146647 | 12.305577 | 3.659993 | 16.104710 | 4.146647 | 12.305577 | 2.963338 | 14.428099 | 3.633341 | 10.008302 | 0.0 | 0.0 | 0.0 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 8.96997 | 0.0 | 3.942505 | 17.260759 | 4.582519 | 11.804620 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | 2.266683 | 11.780831 | 3.120036 | 7.184060 | 0.0 | 0.0 | 0.0 | 0.0 | -0.054993 | 1.500714 | 1.225036 | 0.003024 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9956.869872 | -20.068966 | -4.777321 | -8.648768 | 0.0 | 34.092428 | 5.245705 | 1.437713 | 9956.869872 | 39.560802 | 7.095084 | 8.767452 | 0.0 | 120.483767 | 132.324471 | 170.561840 | 0.007996 | 0.014603 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.279777 | 0.279777 | 0.185620 | 0.007522 | -32.181593 | 4.589394e+04 | -2.181577e+07 | 1435.526774 | 0.001991 | 0.935083 | 1410.752821 | 3.885720 | 0.658664 | 1.0 | 1.0 | 1.0 | -1.0 | 1430.729980 | 1412.109985 | 1418.869971 | 52.676159 | 1.170044 | 18.510010 | 12.390039 | -52.266541 | 0.0 | 0.0 | 0.0 | 0.0 | -2.591408 | 9.478614e-02 | 1.0 | 0.0 | 0.0 | 0.0 | 0.140937 | 0.140791 | 0.141338 | 0.143136 | 0.144528 | 0.144765 | 0.144506 | 0.0 | 0.0 | 0.0 | 0.857143 | 0.571429 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 0.562335 | 0.562335 | 0.562335 | 1.039721 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 |
4 | 2007-01-18 | 0 | 1426.369995 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 9970.399901 | 1.420165e+07 | 4.220011 | 2.376668 | -0.698999 | 1426.369995 | 1424.342843 | 7.0 | 7.381920 | 0.005183 | 54.492749 | -0.800161 | -1.126892 | 25.320068 | 3.0 | 4.0 | 4.0 | 3.0 | 0.714286 | 0.571429 | 0.142857 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1431.900024 | 1412.109985 | 0.864123 | 2.425488e+07 | 5.158183e+07 | 5.791130e+07 | 2.899317e+09 | 2.894320e+09 | 2.881764e+09 | 1.696231 | 12.521440 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1413.753980 | 1416.643970 | 1422.025952 | 1424.839966 | 1428.919995 | 1430.641992 | 1430.707983 | 1431.197998 | 1.0 | 0.691774 | -0.010184 | -0.643236 | -0.936480 | -0.881136 | -0.455067 | -0.372388 | -0.549152 | 0.320142 | 1.0 | 0.691774 | -0.937263 | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.475076 | 0.142857 | 0.285714 | 0.428571 | 0.428571 | 0.714286 | 0.714286 | 0.857143 | 1.0 | 1084.267375 | 1789.038417 | 1478.410191 | 1087.440602 | 1662.502562 | 2311.103630 | 1865.164953 | 1364.082935 | 1672.239492 | 2742.910041 | 2234.677082 | 1637.444076 | 1330.200668 | 3041.650078 | 2575.611511 | 1904.933203 | 1687.521207 | 2750.388873 | 2238.986047 | 1640.282559 | 1683.253483 | 2323.699027 | 1873.598022 | 1369.943117 | 1099.414296 | 1802.755734 | 1488.667354 | 1094.796802 | 22.515576 | 0.0 | 2.739991 | 0.0 | 2.739991 | 0.0 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 5.854981 | 9.703160 | 2.486654 | 29.160024 | 5.319987 | 7.041209 | 2.376668 | 20.482524 | 4.220011 | 8.322581 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00000 | 0.0 | 0.00000 | 0.0 | -4.25000 | 0.0 | 4.25000 | 0.0 | 0.637512 | 16.798215 | 3.402527 | 5.627448 | 0.0 | 0.0 | 0.0 | 0.0 | -4.25000 | 0.0 | 4.25000 | 0.0 | -1.453328 | 4.911162 | 2.233358 | 2.035439 | 0.0 | 0.0 | 0.0 | 0.0 | -0.054993 | 1.500714 | 1.225036 | 0.003024 | 1.170044 | 0.0 | 1.170044 | 0.0 | 9970.399901 | -30.731494 | -7.061845 | -5.021665 | 0.0 | 16.143934 | 7.365980 | 0.822565 | 9970.399901 | 34.713849 | 10.204279 | 5.088588 | 0.0 | 152.286060 | 133.792396 | 170.697378 | 0.007024 | 0.012059 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.182322 | 0.048728 | 0.048728 | 0.045429 | 0.089726 | 0.009583 | -40.969186 | 5.837954e+04 | -2.772887e+07 | 1434.657342 | 0.031742 | 0.797316 | 1415.514256 | 2.942862 | 0.996268 | -1.0 | 1.0 | 1.0 | -1.0 | 1431.900024 | 1412.109985 | 1422.681982 | 64.828994 | -1.280029 | 14.260010 | 5.813013 | -60.313369 | 0.0 | 0.0 | 0.0 | 0.0 | -7.248865 | 1.801999e-10 | 1.0 | 0.0 | 0.0 | 0.0 | 0.140410 | 0.140955 | 0.142748 | 0.144137 | 0.144373 | 0.144115 | 0.143260 | 0.0 | 0.0 | 0.0 | 0.714286 | 0.428571 | 0.142857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.571429 | 0.571429 | 0.714286 | 0.857143 | 1.0 | 0.693147 | 1.039721 | 1.039721 | 1.386294 | 1.386294 | 0.950271 | 1.039721 | 1.098612 | 0.693147 | -0.0 |
y = df_features['target']
df_features_filtered = select_features(df_features.iloc[:, 4:], y)
df_features_filtered.shape
(3295, 122)
df_features_filtered.head()
Close__fft_aggregated__aggtype_"centroid" | Close__variation_coefficient | Close__fft_aggregated__aggtype_"variance" | Close__cwt_coefficients__coeff_6__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_2__widths_(2, 5, 10, 20) | Close__minimum | Close__cwt_coefficients__coeff_6__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_6__w_10__widths_(2, 5, 10, 20) | Close__quantile__q_0.1 | Close__cwt_coefficients__coeff_6__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_5__widths_(2, 5, 10, 20) | Close__quantile__q_0.2 | Close__cwt_coefficients__coeff_5__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_5__w_20__widths_(2, 5, 10, 20) | Close__quantile__q_0.3 | Close__cwt_coefficients__coeff_4__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_4__w_20__widths_(2, 5, 10, 20) | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"min" | Close__c3__lag_3 | Close__quantile__q_0.4 | Close__fft_coefficient__attr_"abs"__coeff_0 | Close__fft_coefficient__attr_"real"__coeff_0 | Close__sum_values | Close__mean | Close__cwt_coefficients__coeff_3__w_20__widths_(2, 5, 10, 20) | Close__abs_energy | Close__cwt_coefficients__coeff_3__w_10__widths_(2, 5, 10, 20) | Close__c3__lag_2 | Close__cwt_coefficients__coeff_3__w_5__widths_(2, 5, 10, 20) | Close__c3__lag_1 | Close__median | Close__cwt_coefficients__coeff_2__w_20__widths_(2, 5, 10, 20) | Close__quantile__q_0.6 | Close__cwt_coefficients__coeff_2__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_3__w_2__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_5__widths_(2, 5, 10, 20) | Close__quantile__q_0.7 | Close__quantile__q_0.8 | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"mean" | Close__cwt_coefficients__coeff_1__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_1__w_5__widths_(2, 5, 10, 20) | Close__quantile__q_0.9 | Close__max_langevin_fixed_point__m_3__r_30 | Close__maximum | Close__cwt_coefficients__coeff_0__w_20__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_10__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_0__w_5__widths_(2, 5, 10, 20) | Close__cwt_coefficients__coeff_2__w_2__widths_(2, 5, 10, 20) | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"max" | Close__cwt_coefficients__coeff_1__w_2__widths_(2, 5, 10, 20) | Close__linear_trend__attr_"intercept" | Close__cwt_coefficients__coeff_0__w_2__widths_(2, 5, 10, 20) | Close__cid_ce__normalize_False | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.0 | Close__absolute_sum_of_changes | Close__mean_abs_change | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.0 | Close__agg_linear_trend__attr_"intercept"__chunk_len_5__f_agg_"var" | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"max" | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.0 | Close__variance | Close__standard_deviation | Close__linear_trend__attr_"stderr" | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.2 | Close__fft_coefficient__attr_"abs"__coeff_1 | Close__linear_trend__attr_"rvalue" | Close__mean_change | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.0 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.4 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.2 | Close__time_reversal_asymmetry_statistic__lag_3 | Close__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.0 | Close__last_location_of_maximum | Close__first_location_of_maximum | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_6 | Close__fft_coefficient__attr_"abs"__coeff_3 | Close__fft_coefficient__attr_"real"__coeff_3 | Close__linear_trend__attr_"slope" | Close__time_reversal_asymmetry_statistic__lag_1 | Close__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.4 | Close__time_reversal_asymmetry_statistic__lag_2 | Close__fft_coefficient__attr_"abs"__coeff_2 | Close__agg_linear_trend__attr_"slope"__chunk_len_5__f_agg_"mean" | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"mean" | Close__fft_coefficient__attr_"imag"__coeff_2 | Close__spkt_welch_density__coeff_2 | Close__change_quantiles__f_agg_"mean"__isabs_False__qh_1.0__ql_0.2 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.0 | Close__fft_coefficient__attr_"imag"__coeff_1 | Close__energy_ratio_by_chunks__num_segments_10__segment_focus_0 | Close__agg_linear_trend__attr_"rvalue"__chunk_len_5__f_agg_"max" | Close__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.0 | Close__change_quantiles__f_agg_"var"__isabs_True__qh_1.0__ql_0.4 | <t
---|