Systematic Alpha Research Framework
A rigorous pipeline for the engineering, calibration, and stress-testing of systematic trading strategies.
Github Repository
Overview
This section documents the quantitative methodologies used to develop tradeable systematic strategies: constructing robust execution systems that can capture theoretical edges while withstanding market friction and regime shifts.
The research framework prioritizes generalization over raw performance. It employs a Global Optimization protocol designed to identify a single, stable parameter configuration that functions effectively across diverse historical periods, rather than overfitting parameters to specific market cycles.
Infrastructure & Methodology
The reliability of these strategies relies on the integrity of the underlying validation engine.
1. Walk-Forward Methodology
A detailed breakdown of the validation protocol.
- Global Robustness: Searching for parameter sets that survive diverse market conditions.
- Degradation Analysis: A quantitative check to reject strategies where \(\text{Sharpe}_{IS} \gg \text{Sharpe}_{OOS}\).
2. Parameter Stability Analysis
Ensuring the strategy is not poised on a “knife-edge” of optimization.
- Sensitivity Mapping: Verifying that small changes in inputs do not cause catastrophic failures in outputs.
- Convexity Check: Prioritizing broad, flat regions of the solution space over narrow, high peaks.
3. Backtest Engine Architecture
Technical documentation of the Python-based simulation engine.
- Hybrid Architecture: Vectorized signal calculation for throughput (\(O(1)\)) + Event-driven execution for path-dependent accuracy.
- Friction Modeling: Implementation of slippage, commission, and stale-data pruning.
Strategy Universe
The current portfolio of strategies, categorized by logic class and their validation status in the Walk-Forward framework.
Adaptive & Momentum
| Strategy ID | Logic Class | Validation Status | Risk Profile | Script |
|---|---|---|---|---|
| SMI Momentum | Mean Reversion / Oscillator | Very Robust (-19.4% Degradation) | Moderate (High Win Rate) | View Script |
| AMA-KAMA | Dual Adaptive Trend / Mean Reversion | Robust (35.66% Degradation) | Conservative | View Script |
Volatility Breakout
| Strategy ID | Logic Class | Validation Status | Risk Profile | Script |
|---|---|---|---|---|
| MABW | Volatility Expansion / Breakout | Rejected (100% Degradation) | Aggressive / Unstable | View Script |
Strategy Research Pipeline
The development lifecycle adheres to an institutional-grade workflow, strictly separating the Calibration Phase (Signal Design & Optimization) from the Validation Phase (Walk-Forward & Stress Testing).
graph TD
%% Color Definitions
classDef ideation fill:#e3f2fd,stroke:#1565c0,stroke-width:2px
classDef calibration fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px
classDef validation fill:#e8f5e8,stroke:#2e7d32,stroke-width:2px
classDef decision fill:#fff3e0,stroke:#ef6c00,stroke-width:2px
classDef outcome fill:#ffebee,stroke:#c62828,stroke-width:2px
classDef success fill:#e8f5e8,stroke:#2e7d32,stroke-width:3px
%% Process Flow
subgraph "Phase I: Ideation & Design"
A[Hypothesis Formulation] --> B[Signal Specification<br/>• Define metrics<br/>• Set thresholds]
B --> C[Prototype Implementation<br/>• Vectorized backtest<br/>• Initial validation]
end
subgraph "Phase II: Calibration (In-Sample)"
C --> D{Global Parameter Search<br/>Optuna TPE Sampler}
D --> E[Cross-Window Optimization<br/>• Rolling windows<br/>• Stability scoring]
E --> F[Candidate Parameter Set]
F --> G[Regime Stability Constraint<br/>Maximize consistency across regimes]
end
subgraph "Phase III: Validation (Out-of-Sample)"
G --> H[Walk-Forward Analysis<br/>• Expanding windows<br/>• Out-of-sample testing]
H --> I{Model Degradation Assessment}
I -->|Significant Decay| J[⛔ REJECT<br/>Overfitting Detected]
I -->|Stable Performance| K[Parameter Sensitivity Analysis<br/>• Local robustness<br/>• Gradient checking]
K --> L[Final Holdout Validation<br/>• Unseen data<br/>• Final performance metrics]
L --> M[✅ ACCEPT<br/>Model Validated]
end
%% Styling
class A,B,C ideation
class D,E,F,G calibration
class H,K,L validation
class D,I decision
class J outcome
class M success
%% Additional Relationships
J -.->|Return to Phase I| A
K -->|If unstable| J
Phase Details
- Hypothesis & Design: Strategies begin with a structural market premise (e.g., volatility clustering, mean reversion constraints). Signals are implemented using pure functions to ensure stateless reproducibility.
- Global Parameter Search: Instead of optimizing each window individually (which leads to curve-fitting), we search for a single parameter set that maximizes the robust objective function across all training windows simultaneously.
- Walk-Forward Validation: The candidate parameters are applied to unseen data. We measure Performance Degradation—the gap between In-Sample training results and Out-of-Sample test results—to quantify the strategy’s “optimism bias.”
Tech Stack
- Language: Python 3.10+
- Core Libraries: Pandas, NumPy (Vectorization)
- Optimization: Optuna (Tree-structured Parzen Estimator)
- Validation: Custom Walk-Forward Engine
- Visualization: Matplotlib, Seaborn