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Abstract

Machine learning is increasingly applied to time series data, as it constitutes an attractive alterna-

tive to forecasts based on traditional time series models. For independent and identically distributed

observations, cross-validation is the prevalent scheme for estimating out-of-sample performance in

both model selection and assessment. For time series data, however, it is unclear whether forward-

validation schemes, i.e., schemes that keep the temporal order of observations, should be preferred.

In this paper, we perform a comprehensive empirical study of eight common validation schemes.

We introduce a study design that perturbs global stationarity by introducing a slow evolution of

the underlying data-generating process. Our results demonstrate that, even for relatively small

perturbations, commonly used cross-validation schemes often yield estimates with the largest bias

and variance, and forward-validation schemes yield better estimates of the out-of-sample error. We

provide an interpretation of these results in terms of an additional evolution-induced bias and the

sample-size dependent estimation error. Using a large-scale financial data set, we demonstrate the

practical significance in a replication study of a statistical arbitrage problem. We conclude with

some general guidelines on the selection of suitable validation schemes for time series data.
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1. Introduction

Machine learning methods are increasingly used for time series predictions. Multiple reasons con-

tribute to their popularity: First, they are able to choose relevant variables from a large number

of input candidates and neglect unimportant ones. Second, they can handle high-dimensional data

sets where the number of features may even exceed the sample size. Third, machine learning models

are general-purpose methods in the sense that they do not make assumptions about the underlying

process generating the time series, and are able to cope well with non-linear dynamics (Zhang et al.,

1998, 2001; Zhang, 2003). Consequently, they are able to generalize well on unseen data and have

been shown to outperform classical time series models for various prediction tasks. Given these

advantages, it is not surprising that machine learning has also been extensively applied to economic

and business time series.2

An important step in the application of machine learning is model selection, with the goal of

choosing the best model among a number of candidates by considering a suitable error measure.

However, as first noted by Larson (1931), estimation of the model error by using data previously

used for training is likely to be too optimistic, as the model may overfit the given data (Hastie

et al., 2009), giving rise to the resubstitution error. Therefore, to select the best model from a

number of choices or to assess the generalization ability of a final model, available data is usually

divided into at least one training and one validation set. As the latter is used to estimate the error

of a model trained on the former, one expects to obtain a better estimate of the model’s out-of-

sample predictive performance. Using as many validation sets as data points available then leads

to leave-one-out cross-validation as proposed by Stone (1974), Allen (1974) and Geisser (1975).

Subsequently, several extensions to the leave-one-out scheme have been proposed, of which k-fold

cross-validation (Geisser, 1975) is most common: Data is randomly divided into k equally-sized

subsets, which are used once for computing a validation error, and k − 1 times for model training.

The final error estimate is the average of all validation subset errors. Today, k-fold cross-validation

can be considered as the standard validation method for most machine learning applications.

To theoretically show the applicability of cross-validation, one must assume that observations are

independent and identically distributed. In case of time series, however, this assumption does

2For example, financial machine learning has been used for stock market return predictions (Kim, 2003; Schnaubelt
et al., 2018; Huck, 2019), option valuation (Andreou et al., 2008), market volatility forecasts (Mittnik et al., 2015),
and commodity price prediction (Weron, 2014; Panapakidis and Dagoumas, 2016; Lago et al., 2018). A corresponding
survey can be found in Henrique et al. (2019). Another area of application is demand prediction, e.g., for electric
utility load forecasts (Baliyan et al., 2015; Hong and Fan, 2016) or retail sales predictions (Beheshti-Kashi et al.,
2015). Yet other works examine the use of machine learning models for macroeconomic forecasting (Teräsvirta et al.,
2005; Wohlrabe and Buchen, 2014; Plakandaras et al., 2015).
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not hold as future observations may depend on past ones. To properly account for the time-

dependence of observations, empirical research based on traditional time series models typically

reverts to validation schemes that keep the temporal order of observations between training and

validation sets. Hence, we refer to these methods as forward-validation methods. One example of

forward-validation would be a rolling-origin scheme, where the model is trained on a block of data

that grows with every split, and validation errors are computed on all later data. Tashman (2000)

reviews several different forms of forward-validation. As an alternative to forward-validation, cross-

validation may be used, ignoring the fact that the assumption of independence is violated. This

may still seem favorable, because cross-validation uses the available data more efficiently in the

sense that every observation contributes to the final validation error.

The practical consequences of using cross-validation for time series validation have been analyzed

in several studies. Bergmeir and Benitez (2012) conduct an empirical study on both synthetic sta-

tionary and real-world time series to compare the performance of cross-validation to the simplest

forward-validation scheme, namely last-block validation. Their results reveal no practical conse-

quences of using cross-validation in a time-series context. Further, cross-validation seems to deliver

more robust error estimates when compared to last-block validation. However, they conclude that

their study is limited to stationary time series. Subsequently, Bergmeir et al. (2014) perform a

similar study, but instead evaluate the directional accuracy of regression models as error metric.

They conclude that blocked cross-validation is preferable to forward-validation for small samples.

More recently, Bergmeir et al. (2018) provide a theoretical justification that cross-validation is ap-

plicable to time-series validation for purely autoregressive stationary models as long as all relevant

lags are appropriately embedded in the feature matrix. Finally, Cerqueira et al. (2017) extend

on the experiments of Bergmeir and Benitez (2012) by including more complex forward-validation

schemes. For synthetic stationary time series, they conclude that cross-validation is applicable. For

real-world data sets however, they find evidence that forward-validation methods perform better.

While it is commonplace to use cross-validation for non-time-series applications, no clear consensus

has been reached on the proper method that should be used to validate machine learning models

applied to time series data.

One of the reasons why results from synthetic time series and real-world data sets differ is the

evolution of the data-generating processes: For real-world data, not only the time-dependence of

observations is important, but a more realistic additional assumption is that the data-generating

process slowly evolves over time. These underlying dynamics invalidate the assumption of a glob-
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ally stationary time series, i.e., perturb stationarity.3 For example, Guegan (2007) lists a number

of phenomena for stock returns yielding such dynamics, among them changes in the unconditional

variance, cyclical components, and jump-induced regime shifts. With this paper, we address the

open question of choosing the proper validation scheme for time series data by considering the im-

pact of slowly-evolving data-generating processes on validation scheme performance. Further, we

seek to provide guidance on the selection of suitable validation schemes in light of slowly-evolving

data-generating processes.

In detail, our contributions are as follows: First, extending on current literature, we introduce a

research design for the comparative analysis of validation scheme performance. We leverage locally

stationary autoregressive processes (Dahlhaus, 2012), i.e., autoregressive stochastic processes with

time-varying parameter curves, to generate homogeneous sets of synthetic time series that allow for

a fine-grained control of both the type and strength of the stationarity perturbation, which would

not be possible with real-world data.

Second, we present simulation studies for choosing the appropriate validation scheme in light of

slowly-evolving dynamics. Specifically, we present the results of extensive simulation studies and

comprehensively assess key performance metrics of various validation schemes for a broad range

of synthetic time series, both in a regression and a classification setting, and for various machine

learning models. The specifications of parameter curves are motivated by stylized facts of economic

and financial time series, such as cycles or regime shifts. Our study comprises eight common cross-

and forward-validation schemes and benchmarks them against last-block schemes. Performance is

first assessed in terms of mean squared estimate error, i.e., the difference between the validation

scheme’s estimate of the out-of-sample error and the actual out-of-sample error. Next, we split this

error into a bias and a variance component which we analyze separately, as a low bias is preferred

for model assessment, while a low variance is beneficial when the goal is model selection. Our

experiments explicitely consider the most important influencing dimensions of validation scheme

performance: the type of slowly evolving process dynamics, the strength of the perturbation of

stationarity, and the sample size.

We demonstrate that, depending on the type of process dynamics, the application of cross-validation

schemes to time series data comes at great risk: While theoretically applicable and empirically re-

sulting in the lowest errors in case of global stationarity, cross-validation performs considerably

worse in situations where processes are allowed to evolve over time. Furthermore, our results

3We use the word ’dynamics’ to describe the evolution of the data-generating process.
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show that forward-validation methods can achieve a better performance, both in terms of bias

and variance, than cross-validation methods in such situations. In the context of autoregressive

processes, this is especially true when non-periodic changes of the autoregression coefficients are

present. When the strength of the stationarity perturbation is gradually increased, the error of

cross-validation estimates is fastest-growing, and forward-validation methods become preferable.

Finally, for very high perturbation strengths, last-block validation becomes preferable in terms

of variance. By deriving an approximation for the prediction error of a time-varying autoregres-

sive model, we interpret these results in terms of a trade-off between evolution-induced bias and

the sample-size dependent generalization ability of the model. Overall, our results suggest that

forward-validation methods are not only preferable because they are inherently look-ahead free,

but furthermore because they may better estimate the out-of-sample error in presence of slowly

changing dynamics.

Third, we demonstrate the practical significance of these findings by showing that similar perfor-

mance differences arise in a real-world financial data set. Specifically, we employ a well-established

financial machine learning model for statistical arbitrage in stock markets, and perform a large-

scale comparative study of validation schemes on daily stock price data of all S&P 500 constituents

from 1990 to 2015. The results are very similar to those using synthetic data with time-dependent,

non-periodic autoregression coefficients: We find that randomized cross-validation performs worst,

and forward-validation schemes yield the lowest estimate errors. The magnitude in performance

difference between cross- and forward-validation is substantial, as we find that it is in the order of

10 percent of the overall error estimate.

The rest of this paper is organized as follows: We begin by reviewing cross-validation and forward-

validation in Section 2. Then, we introduce the methodology of our simulation study in Section 3.

Our results are presented in Section 4, and we conclude in Section 5.

2. Cross- and forward-validation schemes

The ability of a model to generalize, i.e., to perform well on unseen data, is of utmost importance

in the process of model selection and model validation. Commonly, the generalization error LD is

defined as

LD = EX,Y

[
`(X, Y, f̂(X; θ̂)) | D

]
. (1)

Therein, we write the available training data as D = {(xt, yt)}t, where input (feature) vectors of

dimension d are denoted as x ∈ X ⊂ Rd, and scalar output (target) variables are denoted by
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y ∈ Y ⊂ R. The model f̂ is trained on D yielding fitted parameters θ̂, and ` is a loss function

`(x, y, ŷ) : X ×Y ×Y → R≥0. While keeping the training data fixed, the expectation is taken with

respect to random variables X and Y . The prediction error (expected generalization error) L is

then given by additionally taking the expectation over all possible realizations of the training data

D, i.e., L = ED [LD] (Hastie et al., 2009).

These definitions assume that all data is drawn independently from an underlying distribution.

Generally, this assumption is violated for time series data, as observations depend on past values

and the data-generating dynamics might evolve over time. Consequently, the definition of the

(expected) generalization error is no longer adequate in a time series context, and must be altered

to explicitly cope with the time-ordering of the data. The most natural and pragmatic approach

is to consider the generalization error as expected error on unobserved future data.4 We therefore

assume that we have training data D of size T and denote future test data as Dtest.

During model construction and selection, future test data are unknown. To nevertheless estimate

the out-of-sample prediction error L, one often divides available training data into a number of

train/test splits (or folds) by means of a validation scheme. For given training data D and number

of splits k, a validation scheme V(D; k) is specified by a set of k non-overlapping data splits, i.e.,

V(D; k) =
{

(Iti , Ivi ) | Iti , Ivi ⊂ {0, . . . , T − 1}; Iti ∩ Ivi = ∅
}k−1
i=0

. (2)

For every split i, the model is trained on data indexed by the index set Iti , and the loss is determined

on validation data indexed by Ivi . The estimate of the error is then the average out-of-sample loss

over all k splits of the validation scheme V:

L̂(D;V) =
1

k

k−1∑
i=0

1

|Ivi |
∑

(x,y)∈D(Ivi )

`(x, y, f̂(x; θ̂Iti )). (3)

Therein, |Ivi | denotes the cardinality of the i-th validation index set, f̂(x; θ̂Iti ) denotes the predictor

trained on the i-th set of training data, and D(Ivi ) denotes the i-th set of validation data. Depending

on the exact choice of V, we can arange existing validation schemes into two main groups: First,

cross-validation schemes that use all available training data in every split, and second, forward-

validation schemes that preserve the time-ordering of the data. Figure 1 illustrates all splitting

schemes that are introduced in the following.

4This definition is also used for example by McDonald et al. (2011) and Kuznetsov and Mohri (2014) in the
derivation of generalization bounds for time series prediction of non-stationary mixing stochastic processes.
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Figure 1: Illustration of validation data splitting schemes. We visualize different data splitting schemes
V by their respective validation index sets Ivi (blue) and training index sets Ivi (red), where i denotes the split
index. We show the following schemes: VLB: last-block validation, VrCV: random cross-validation, VbCV: blocked
cross-validation, VhbCV: h-blocked cross-validation, VroFV: rolling-origin forward-validation, VrwFO: rolling-window
forward-validation, VgwFO: growing-window forward-validation. With the exception of VLB, sets are displayed for
k = 5 splits.

2.1. Cross-validation

Cross-validation schemes have a long history, are commonly used to validate machine learning

models and have a sound theoretical foundation – see Arlot and Celisse (2010) for a recent survey.

Cross-validation can be traced back to the works of Stone (1974), Allen (1974) and Geisser (1975).

Following Arlot and Celisse (2010), we can further distinguish two types of cross-validation: First,

exhaustive data splitting schemes average over one split for every possible training set of some fixed

size. Prominent examples are the leave-one-out (Stone, 1974; Allen, 1974; Geisser, 1975), where

k = T and Ivi = {i}, and the leave-p-out (Shao, 1993), in which every possible subset of p samples

is once used as validation set, leading to a total of k =
(
T
p

)
splits. Second, partial data splitting

schemes do not use all possible subsets, and therefore have a reduced computational complexity.
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Well established is k-fold cross-validation (Geisser, 1975), which divides the available training data

into k subsets of approximately equal size, i.e., |Ivi | ≈ T
k ∀ i ∈ {0, . . . , k− 1}. Each of the k subsets

is then used as validation set for a model trained on the remaining k − 1 subsets. Observations in

these subsets are drawn randomly without replacement, and we therefore refer to this validation

scheme as random cross-validation defined as

VrCV(k) :=
{

(Iti = Īvi , I
v
i = {π(i), π(i+ k), π(i+ 2k), . . . })

}k−1
i=0

, (4)

where π denotes a random permutation of the index set.

The statistical properties of cross-validation are difficult to derive and depend on the actual frame-

work used (Arlot and Celisse, 2010). For i.i.d. observations, the bias of cross-validation has been

shown to be positive and decreasing with the size of the training set, which, in case of k-fold

cross-validation, increases with the number of splits k. For a linear regression setting and in an

asymptotic expansion, the variance of the cross-validation estimate has been shown to decrease

with the number of splits k (Burman, 1989).

Bergmeir et al. (2018) provide a theoretical argument that standard random cross-validation is

applicable to time series forecasting for purely autoregressive models. This result relies on a number

of assumptions such as a stationary autoregressive process and uncorrelated errors, which occurs

for example when the time series is embedded appropriately.

Modified versions of k-fold cross-validation have been proposed for use specifically with dependent

time series data: Snijders (1988) proposes the use of continuous parts of the time series as validation

sets. Transferred to cross-validation, this means that instead of randomly selecting any k subsets of

similar size, one divides the data into k time-continuous blocks of observations. Following Bergmeir

and Benitez (2012), we refer to this splitting scheme as blocked cross-validation, which is formally

given by

VbCV(k) :=
{(
Iti = Īvi , I

v
i =

{
b ikT c, b

i
kT c+ 1, . . . , b i+1

k T c − 1
})}k−1

i=0
. (5)

Under the name h-block validation, Burman et al. (1994) introduce an exhaustive splitting scheme

that extends on leave-one-out, but removes blocks of size h from either side of every single validation

observation to block out potentially dependent observations. In the following, Racine (2000) show

that h-block validation is asymptotically inconsistent in the sense of Shao (1993). As a solution,

Racine (2000) introduce the so-called hv-block cross-validation, where the validation data of each

fold is a continuous block of 2v + 1 observations. To remove dependencies between training and

validation subsets, h observations adjacent to either side of the validation set are left out. The

model is trained on all Ntrain − 2h− 2v − 1 remaining observations. The validation block is rolled
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forward by one observation, such that a total of k = Ntrain − 2v validation folds is considered. As

this exhaustive data splitting scheme is computationally expensive, Bergmeir and Benitez (2012)

consider a blocked form of cross-validation, which divides data into k blocks of continuous data

and removes h observations from either side of the validation block. Bergmeir et al. (2014) further

analyze this scheme for directional accuracy forecasts of stationary data. In the following, we refer

to this scheme as h-blocked k-fold cross-validation specified by

VhbCV(k, h) :=
{(
Iti = Īvi , I

v
i =

{
b ikT c+ h, b ikT c+ h+ 1, . . . , b i+1

k T c − h− 1
})}k−1

i=0
. (6)

The proper value of h generally depends on the data and should be chosen such that observations

that are at least h apart become independent.

2.2. Forward-validation

Compared to cross-validation, forward-validation schemes strictly demand that validation set ob-

servations succeed all observations in the respective training set. As such, forward-validation is

inherently free of look-ahead bias. On the other hand, forward-validation splits no longer cover

all available data, i.e., Iti ∪ Ivi = {0, . . . , T − 1} does not generally hold. This limits the available

training data when compared to cross-validation, and data are no longer efficiently used.

The simplest validation scheme is hold-out (Devroye and Wagner, 1979; Arlot and Celisse, 2010):

A model is trained once on data specified by an index set It and then evaluated on its non-empty

complement Īv. Generally, It is chosen randomly; however, when using the latest part of the

training data as validation set, hold-out represents the simplest forward-validation scheme. The

splitting scheme of last-block validation is given by

VLB(f) :=
{

(It = {0, . . . , b(1− f) · T c − 1}, Iv = Īt)
}
, (7)

where f ∈ (0, 1) defines the fraction of data used for validation.

In his review, Tashman (2000) discusses several forward-validation schemes that have been used for

time series validation. Rolling-origin evaluation (for one of the first descriptions see, for example,

Armstrong and Grohman, 1972) is a scheme that perpeptually transfers an observation from the

future validation set to the training set, and retrains the model after each transfer. Due to large

computational costs, we instead consider a modified scheme where the origin is moved forward

by blocks of observations. Data before (after) the respective split’s origin is used for training

(validation). We define this scheme by

VroFV(k, fmin) :=
{(
Iti = Īvi , I

v
i =

{
bfminT + iκroFVc, . . . , T − 1

})}k−1
i=0

, (8)
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where, as before, k denotes the number of splits, fmin ∈ [ 1T , 1) is the minimum fraction of data

used as training set, and κroFV = (1−fmin)T
k denotes the number of observations the origin is shifted

by. This scheme has the theoretical advantage that more recent observations, which may be most

representative of future dynamics, are used with higher weight, as they appear in more than one

validation set. On the other hand, observations at the end of the training data set are validated

using a model that has been trained on very early data only.

To overcome this disadvantage, validation data can be limited to a fixed number of observations

following the split’s training data. As before, the amount of training data increases with every split

as it is taken from a flexible-size growing window. Growing-window validation was first used by

Makridakis (1990) for time series forecasting, and later also by Leitch and Tanner (1991), Thoma

(1994) and Pesaran and Timmermann (1995) for further economic research questions. As before, we

introduce a blocked variant of growing-window validation to limit computational cost, and define

this scheme as

VgwFV(k, fmin) := {(Iti =
{

0, . . . , bfminT + iκgwFVc − 1
}
,

Ivi =
{
bfminT + iκgwFVc, . . . , bfminT + (i+ 1)κgwFVc − 1

}
)}k−1i=0 , (9)

where κgwFV = (1−fmin)T
k is the number of observations the window grows by.

Instead of letting the training set grow with each split, one can also use a fixed-size rolling window

as training data, as, for example, used by Callen et al. (1996) and Swanson and White (1997).

Swanson and White (1997) discuss the advantage of rolling-window validation over growing-window

validation for econometrics in non-stationary environments, as “the model is allowed to update by

discarding older and less relevant observations”(Swanson and White, 1997, p. 444). We define this

growing-window validation in blocked form as

VrwFV(k, f) := {(Iti =
{
biκrwFVc, . . . , bfT + iκrwFVc − 1

}
,

Ivi =
{
bfT + iκrwFVc, . . . , bfT + (i+ 1)κrwFVc − 1

}
)}k−1i=0 , (10)

where f specifies the constant fraction of data that is used for training and κrwFV = (1−f)T
k is the

number of observations the window is rolled forward by.

3. Methodology

We evaluate the performance of these validation schemes in extensive Monte Carlo simulation

studies, that we describe in the following. Unlike analytical analyses, this allows us to consider a
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number of different models and various data-generating time-evolving processes. The goal of our

simulations is to compare the estimate error of different validation schemes, i.e., assess how well a

given validation scheme estimates the out-of-sample prediction error using available training data

only. Our study design is motivated by several works in this area – see, among others, Bergmeir

et al. (2018) and Cerqueira et al. (2017).

For all simulation studies, we run 1000 replications, each of which consists of three steps: First,

we generate a time series with T observations that serves as the data source for both training and

out-of-sample test data. These observations are used to generate features and targets via time-delay

embedding. We use the first 80 percent of data as training sample D, and the last 20% are held

back as test sample Dtest. We use data from two sources: We employ synthetic data from a broad

range of different locally stationary autoregressive processes that use time-varying parameters to

perturb global stationarity, as well as financial data in an extensive real-world application study.

The generation of our data sets and the choice of underlying processes are further detailed in Section

3.1. Second, we compute the out-of-sample model loss as ground-truth loss. To this end, we first

train a given model f on all training data D to obtain a parameter estimate θ̂. Then, we generate

predictions for the held-out test data Dtest and compute the empirical generalization error L using a

loss function `. Our selection of models is described in Section 3.2 and the respective loss functions

are outlined in Section 3.3. Third, using training data D only, and using the same model as in the

previous step, we apply different validation schemes V to obtain the estimated error L̂(D;V) using

equation 3. Finally, we calculate the error for each of these estimates as L̂(D;V)−L. Values closer

to zero are preferred as these indicate better estimates of out-of-sample performance. Finally, we

aggregate results from all replications.

3.1. Data generation

3.1.1. Data generating processes

The goal of our study is to analyze the performance of validation methods in situations where global

stationarity is perturbed by evolving process dynamics. To this end, we study locally stationary

autoregressive processes (Dahlhaus, 2012). Compared to conventional autoregressive processes,

these allow for parameters that change slowly over time, rendering them the perfect test bed for

the goal of our study: First, autoregressive processes have been extensively used in the literature

as data generating processes for related studies (see, for example, Bergmeir and Benitez, 2012;

Bergmeir et al., 2018; Cerqueira et al., 2017; Fischer et al., 2018) and are simple yet extensively

used in applications. Second, introducing time-dependent parameters as a perturbation of process

stationarity to describe slowly changing dynamics is a natural choice. Third, studying synthetic data

from locally stationary processes allows us to precisely control the type and strength of perturbation.
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Compared to using real-world datasets, we are therefore able to simulate sets of homogeneous times

series with similar characteristics.

To formalize the notion of locally stationary processes, consider a time-varying autoregressive pro-

cesses of order p (tvAR(p)) that follows

Xt − µt =

p∑
j=1

ϕt,j · (Xt−j − µt−j) + σtεt, (11)

with εt being an independent random variable of zero mean and unit variance. In the formulation

above, this process in defined in discrete time t ∈ Z. Following Dahlhaus (2012), we rewrite the

process in rescaled time u = t/T by rescaling all parameter curves to the unit interval, which results

in the process equation

Xt,T − µ(u) =

p∑
j=1

ϕj(u) · (Xt−j,T − µ(u− j/T )) + σ(u)εt. (12)

Therein, we use a time-varying parameter vector ϕ : R→ Rp, time-varying variance σ : R→ (0,∞)

and time-varying mean µ : R→ R. Outside the unit interval, we assume that all parameter curves

retain the value at the boundary, i.e., ϕ(u) = ϕ(0), σ(u) = σ(0) and µ(u) = µ(0) for u < 0 and

ϕ(u) = ϕ(1), σ(u) = σ(1) and µ(u) = µ(1) for u > 1. We use the concept of rescaled time to study

the sample size-dependent performance of different validation methods: In rescaled time, we can

keep the functional form of the parameter curves constant, and at the same time vary the number

of observations available for every locally stationary process.

Following Bergmeir and Benitez (2012), the order p of the autoregressive process and the initial

parameter ϕ̃ are randomly determined prior to each replication, which allows us to obtain average

results for a large number of different processes: The order p is drawn with equal probability from

{1, . . . , pmax}. Then, p random roots of the characteristic polynomial ri are sampled from the

interval [−rmax,−1.1] ∪ [1.1, rmax] with equal probability, and the initial autoregressive parameter

values ϕ̃i are determined. Following Cerqueira et al. (2017), we set pmax to 5 and rmax to 5.

We perform simulation studies for a broad range of parameter curves yielding different types of

data generating processes (DGP) – compare Table 1 for a summary. Every DGP specifies some

time-dependence of either the mean µ(u), the autoregression coefficients ϕ(u) or the variance of

the innovations σ2(u). Our selection of DGP is partially motivated by different types of non-

stationarities present in financial time series, e.g., cyclical dynamics, a decay of autocorrelation

over time or jump-induced regime changes – for an overview of different non-stationary phenomena

in finance, see Guegan (2007).
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As baselines, we include a noise process with no structure at all (BASE-NOISE ), as well as a globally

stationary autoregressive process (BASE-AR). In a first set of DGP, we perturb global stationarity

by adding a time-varying mean to the process. The DGP MEAN-JUMP adds discrete jumps to

the otherwise constant mean, where the mean process is modeled as compound Poisson process

(Ross, 1996, p. 82 ff.) with rate λ and jump sizes that are independently normally distributed with

variance s. We specify the rate of the Poisson process in terms of the expected number of jumps γ,

i.e., λ = γ/T , which ensures that the expected number of jumps is constant when changing sample

size. The jump process Jγ,s(u) is then given by

Jγ,s(u) =

N(uT )∑
i=1

Si, where Si ∼ N (0, s) and N(t) ∼ P (λ = γ/T ) . (13)

The variance of this process after T steps, i.e., for u = 1, is γs.

The DGP MEAN-RW includes a stochastic drift of the mean modeled by a continuous-time Wiener

process Wβ(u) for u ∈ [0, 1] (Steele, 2001, p. 29 ff.) that assumes Gaussian increments Wβ(u+δ0)−

Wβ(u) ∼ N (0, βδu) with strength parameter β. The formulation as a Wiener process in rescaled

time u ensures that the variance at u = 1 is equal to β independent of the selected T . The related

discrete-time random walk has normally distributed increments with variance β/T .

In a second set of non-stationary DGP, we consider processes with time-vaying autoregression

coefficients. We include a deterministic linear (COEF-LIN ) and exponential decay (COEF-EXP)

with strength parameters α and τ , respectively, as well as a periodic time dependence following a

sine curve (COEF-SINE ). In addition to a fixed strength parameter α, the latter is governed by a

phase φ and frequency ω, which are held fixed for all u during a single replication. We randomly

determine frequency (uniformly sampled from the interval [1, 5]) and phase for each replication to

rule out a systematic dependence of results on some fixed phase or frequency. In addition to these

deterministic autoregression coefficient curves, we consider randomly changing curves: Starting

from the initial roots ri of the autoregressive process, we add realized values of some stochastic

process in every time step, and redetermine the coefficients ϕ(u) in every time step t. In case new

roots fall into the interval [−1.1, 1.1], we clip values to the boundaries of this interval.5 The DGP

COEF-RW lets the roots ri of the autoregression process evolve according to a Wiener process with

increment variance βδu, i.e., similar to the DGP MEAN-RW. The DGP COEF-JUMP perturbs the

processes’ roots by adding discrete jumps according to a compound Poisson process (defined along

the lines of equation 13).

5Unlike directly changing autoregression coefficients, this procedure ensures stationarity of the process at all times.
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A third set of non-stationarity DGP introduces time-varying variance of the autoregressive process.

The DGP VOLA-EXP includes an exponentially decaying variance with decay constant 2τ , which

is also considered in Chandler (2010). Similar to previously described jump processes, the DGP

VOLA-JUMP adds a series of dicrete jumps to the then piecewise constant volatility σ2(u) of the

process.

To generate a realization xt,T for a given DGP Xt,T , we proceed as follows: First, we use i.i.d.

standard normal innovations εt. Second, a burn-in phase of 500 observations for u < 0 and therefore

with a constant parameter curve, is used to initialize the process. Third, the process evolves

according to its process equation and parameter curves, and a sample of T obervations is generated

from the rescaled time interval u = t/T ∈ (0, 1].

To construct feature vectors, we consider d lags of the realized time series xt,T , i.e., take the vectors

xt = (xt−1,T , xt−2,T , . . . , xt−d,T ) (14)

as features. We set d to 5 to embed every possible autoregressive model in this specification. We

assess validation methods in both a regression and a classification setting, which allows us to check

for robustness under changes of the target variable. Additionally, a classification problem is not

affected by changes in the scale of the time series. In the regression setting, the target is the value

of the time series at time t, i.e.,

yrt = xt,T . (15)

For classification, the target encodes the directional evolution of the time series with respect to its

last value as

yct =

 1 if xt,T ≥ xt−1,T ,

0 else.
(16)

3.1.2. Financial data

In addition to synthetic data from locally stationary autoregressive processes, we analyze validation

schemes for the example of a large-scale financial data set, which allows us to study a set of

homogenous time series from a single domain in detail.

We obtain daily total return indices for all stocks that have been part of the S&P 500 index in

the time period from January 1990 to October 2015. Data are corrected for dividend payments,

corporate actions and stock splits. In every replication of our Monte Carlo study, we randomly

create a subset of these data as follows: First, and following a moving block bootstrap scheme

(Lahiri, 2003, p. 25 ff.), we sample a continuous block of total return data that comprises 1240
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trading days, i.e., approximately 5 calendar years. Second, we randomly choose a sub-universe of

250 stocks out of all constituents of the S&P 500 index at the first day of the moving block.

With this subsample of data, we construct a classification task following Krauss et al. (2017): First,

we generate feature vectors: We calculate the stock’s simple return in a time window ∆t days prior

to the respective day, where ∆t ∈ {{1, 2, . . . , 20} ∪ {40, 60, . . . , 240}}. The first feature therefore

contains yesterday’s return, and the last feature the return realized over the past 240 days. The

first 240 days of data are considered only for feature generation, and discarded afterwards. Second,

we calculate a binary target: We consider a stock’s return and compare it to the median return of

all stocks in the sample for the same day. We assign a one if the stock’s return exceeds the median,

i.e., outperforms the market, and zero otherwise. After constructing feature vectors and the target,

we are left with 1000 observations for all of the 250 stocks, giving a total data set size of 250000.

Observations from all stocks are used jointly to train a single model.

3.2. Prediction models

Validation scheme performance may also depend on the selected prediction model, for example

through different learning curves, i.e., the ability to generalize on unseen data depending on the

size of available training data. Therefore, we select the following machine learning models to obtain

robust results from the simulation study:

• Linear models (LR): As basic linear models, we include a standard linear regression for the

regression target, and logistic regression in case of the classification setup (Hastie et al., 2009).

In the default implementation, the latter uses L2 regularization with strength 1.0.

• Random forests (RF): We include a random forest model for both the classification and the

regression setting (Breiman, 2001). We use a maximum depth of 10 and an ensemble of 100

decision trees.

• Feed-forward artificial neural networks (NN): We use a multilayer perceptron model (Hastie

et al., 2009) with one hidden layer of 10 neurons and the rectified linear activation function.

The activation function of the single output neuron is the sigmoid function in the classification

case and the identity function for the regression setup.

This selection is motivated by the following considerations: First, these models serve as represen-

tatives for widespread model classes. The simultaneous use of regression and classification models

allows us to obtain results for two very common application scenarios of machine learning mod-

els. Second, implementations of these models are readily available in numerous machine learning
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libraries, which further enhances the reproducibility of our results. Third, most of these models

have been used in similar studies, for example by Cerqueira et al. (2017).

3.3. Error measures

For regression models, we evaluate model performance using the fraction of unexplained variance,

FV U =
∑

(yrt − ŷrt )
2/
∑

(yrt − ȳr)2, where ȳr denotes the arithmetic mean of the true target

values ŷrt . This error measure relates to the coefficient of determination (R2 score) as R2 =

1 − FV U . Our choice of regression error measure is motivated by three reasons: First, it is

commonly used to evaluate regression model performance and easy to interpret. Second, compared

to other common error measures such as the (R)MSE, it is scale-independent and allows to compare

model performance from different, heterogeneous time series as used in the simulation study. Third,

the specific choise of R2 based on the work of Kvalseth (1985), who compares different forms of the

coefficient of determination and concludes that this definition fulfills most of the desired properties.

The corresponding loss function is therefore given by the quadratic loss `SE(x, yr, ŷr) = C(yr− ŷr)2

in which the constant C is given by the denominator of the coefficient of determination.

In the case of classification models, scale-independence is achieved by definition of the target yc

and model performance is measured by the misclassification error (i.e., the inverse accuracy score),

corresponding to the 0-1 loss given by `0-1(x, yc, ŷc) = 1{ŷc 6= yc}.

4. Empirical results

In this section, we present empirical results from our simulation studies. In a first set of studies

(Sections 4.1 and 4.3), we use a fixed sample size and set the perturbation strength of processes such

that parameter variations are similar in magnitude. The goal of these first studies is to explore the

influence of different types of stationarity perturbation, and to understand whether differences in a

validation scheme’s performance are driven by bias or variance. Section 4.2 interprets these results

in terms of a trade-off between a bias introduced by the processes’ evolution and the sample-size-

dependent generalization ability of the model. In a subsequent analysis (Section 4.4), we specifically

consider the influence of time series length and perturbation strength for selected processes. Finally,

Section 4.5 presents results from our real-world application study.

4.1. Overview – constant sample size and constant perturbation strength

The first simulation study targets a large-scale comparison of validation scheme performance for

different data generating processes and models with a fixed time series length of T = 10000.6 The

6This time series length may be considered a medium length times series. For a single time series at daily frequency,
this corresponds to about 27 years of data, which is very reasonable in a number of applications. For financial machine
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parametrization of our locally stationarity processes is such that similar perturbation strengths

are achieved across processes, whenever applicable. For processes with time-varying autoregression

coefficients, we target a relatively small variation in coefficients in the order of 10 percent. Con-

sequently, we set α = 0.1 and τ = − ln(0.9) for deterministic coefficient curves. For the DGPs

COEF-JUMP and COEF-RW, we set γ = 100, s = 0.001 as well as β = γs = 0.1, respectively.7

For processes with changing mean, we set γ = 100, s = 0.01 and β = 0.01, which both correspond

to a root mean square translation distance of 0.1. For the process with decaying variance, we set

τ = −0.5 · ln(0.01).

As baselines, we consider last-block validation schemes that use the last 10 percent (LB10 ) and the

last 30 percent (LB30 ) of the data as validation set. For cross- and forward-validation schemes,

we use the same number of splits for comparability and to achieve roughly similar computational

costs for all methods. We use k = 10 splits, which is a commonly used value (Cerqueira et al.,

2017). As cross-validation methods, we consider random cross-validation (rCV ), blocked cross-

validation (bCV ) and hv-blocked cross-validation (hbCV ). For the latter, we set the gap size h

to the maximum order of the autoregressive process, i.e., h = 5. Further, we include rolling-

origin forward-validation (roFV ), rolling-window forward-validation (rwFV ) and growing-window

forward-validation (gwFV ). All forward-validation schemes require to choose a (minimal) size of the

training data. In order to not loose too many training samples when compared to cross-validation

methods, we set the (minimum) size of training data to f(min) = 0.4.

We discuss most results for the regression case (Table 2), and those from the classification setting

only in case of material differences. As a first performance metric, the table lists the mean of the

squared estimation error [L̂(D;V)− L]2, which we denote as MSEL̂(V). Corresponding results for

the classification setting are listed in Table 5 of the Appendix. Further, we compute average ranks

for each validation scheme according to the squared estimation error, and perform statistical tests

as suggested by Demšar (2006): We apply the Friedman test with the null hypothesis of equal

ranks, which we can reject for all cases. We therefore apply the post-hoc Nemenyi test, which

rejects the null hypothesis of similar ranks for a pair of validation methods if their average ranks

differ by at least a critical difference CD. We visualize average ranks and corresponding critical

differences for selected data generating processes in Figures 2, 3 and 5.

Globally stationary baseline cases – superiority of cross-validation: For the baseline processes

learning, typical sample sizes might even be much larger, consider as an example the case of using returns from 1000
trading days (four years) and 100 stocks as targets.

7As the roots of the autoregressive process are chosen from the interval [1.1, 5], the root mean square translation
distance

√
γs ≈ 0.3162 corresponds to a perturbation in the order of 10%.
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MSEL̂(V) × 102

Model DGP VLB10 VLB30 VrCV VbCV VhbCV VroFV VrwFV VgwFV

LR BASE-AR 0.0874 0.0460 0.0311 0.0317 0.0317 0.0415 0.0355 0.0351
BASE-NOISE 0.0011 0.0005 0.0004 0.0004 0.0004 0.0005 0.0013 0.0009
MEAN-JUMP 1.0897 1.6382 2.6031 1.1309 1.1284 1.5253 1.1136 1.0985
MEAN-RW 0.9797 1.6437 2.3023 0.9722 0.9698 1.3489 0.9269 0.9330
COEF-LIN 0.1186 0.0875 0.1896 0.1672 0.1672 0.0850 0.0940 0.0940
COEF-EXP 0.1107 0.0775 0.1734 0.1516 0.1516 0.0738 0.0831 0.0830
COEF-SIN 0.4869 0.4278 0.2769 0.2647 0.2647 0.3386 0.3014 0.3011
COEF-JUMP 0.7271 0.9769 1.7918 1.6197 1.6199 0.8944 1.2555 1.2570
COEF-RW 0.9441 1.4328 2.6053 2.2412 2.2414 1.1964 1.6163 1.5814
VOLA-EXP 0.1110 0.0602 0.0429 0.0372 0.0372 0.0473 0.0435 0.0431
VOLA-JUMP 0.1264 0.0642 0.0439 0.0445 0.0445 0.0593 0.0534 0.0531

RF BASE-AR 0.0944 0.0511 0.0356 0.0365 0.0365 0.0476 0.0669 0.0488
BASE-NOISE 0.0063 0.0047 0.0026 0.0026 0.0026 0.0046 0.0152 0.0058
MEAN-JUMP 2.9740 4.5452 5.0637 2.9944 2.9862 4.0674 2.8569 2.8234
MEAN-RW 2.1257 3.3833 3.8528 2.1053 2.0979 3.0168 1.9833 1.9945
COEF-LIN 0.1273 0.0831 0.1764 0.1539 0.1535 0.0761 0.0697 0.0786
COEF-EXP 0.1262 0.0784 0.1792 0.1555 0.1550 0.0739 0.0705 0.0790
COEF-SIN 0.4644 0.4319 0.2847 0.2708 0.2714 0.3433 0.3417 0.3206
COEF-JUMP 0.7439 0.9382 1.6800 1.5142 1.5154 0.8589 1.2136 1.1979
COEF-RW 0.9757 1.3904 2.3033 1.9565 1.9572 1.1730 1.4440 1.4278
VOLA-EXP 0.1042 0.0650 0.0611 0.0448 0.0445 0.0567 0.0689 0.0499
VOLA-JUMP 0.1431 0.0748 0.0471 0.0462 0.0461 0.0700 0.0795 0.0616

NN BASE-AR 0.0994 0.0526 0.0357 0.0365 0.0364 0.0490 0.0478 0.0436
BASE-NOISE 0.0048 0.0033 0.0019 0.0020 0.0019 0.0025 0.0066 0.0034
MEAN-JUMP 1.1686 1.6664 2.5698 1.1269 1.1213 1.5798 1.1201 1.1133
MEAN-RW 0.8782 1.4165 2.3028 0.8308 0.8267 1.1940 0.8057 0.8052
COEF-LIN 0.1221 0.0746 0.1794 0.1562 0.1563 0.0719 0.0775 0.0829
COEF-EXP 0.1204 0.0846 0.1848 0.1613 0.1614 0.0804 0.0840 0.0891
COEF-SIN 0.4465 0.4211 0.2698 0.2576 0.2570 0.3291 0.3042 0.2962
COEF-JUMP 0.7582 0.9948 1.7815 1.6005 1.6004 0.9037 1.2408 1.2426
COEF-RW 0.9840 1.4257 2.5093 2.1562 2.1571 1.1991 1.5599 1.5481
VOLA-EXP 0.1286 0.0791 0.0619 0.0529 0.0528 0.0610 0.0559 0.0562
VOLA-JUMP 0.1365 0.0600 0.0427 0.0411 0.0417 0.0539 0.0533 0.0497

Table 2: Comparison of mean squared estimate errors for the regression case. This table shows the mean
squared estimate error MSEL̂(V) for different validation schemes and different data generating processes (DGP),
multiplied by 100. Higher values indicate a larger deviation between the in-sample validation error estimate and the
true out-of-sample error. The maximum (minimum) values of each row are shown in bold (underlined). Results for
the linear regression (LR), random forests (RF) and feed-forward neural network (NN) are shown separately. In total,
eight validation schemes are listed: Last block validation using the last 10 percent (LB10 ) or 30 percent of the data
(LB30 ); cross-validation in the randomized variant (rCV ) as well as the blocked (bCV ) and h-blocked form (hbCV );
forward-validation in rolling-origin (roFV ), rolling-window (rwFV ) and growing-window (gwFV ) variants.

19



3 4 5 6 7

rCV 4.0250
hbCV 4.0780

bCV 4.1100
gwFV 4.3220 rwFV4.4690

roFV4.5350
LB304.8660
LB105.5950

CD
0.3320

(a) DGP BASE-AR

3 4 5 6 7

hbCV 3.8410
bCV 3.9080

rwFV 4.2390
gwFV 4.2830 LB104.4370

roFV4.5230
LB304.7030
rCV6.0660

CD
0.3320

(b) DGP MEAN-JUMP

3 4 5 6 7

roFV 3.6540
gwFV 3.7720
rwFV 3.7750
LB30 3.7960 LB104.5240

hbCV5.0880
bCV5.2200
rCV6.1710

CD
0.3320

(c) DGP COEF-LIN

3 4 5 6 7

rCV 3.8720
bCV 3.8830

hbCV 3.8930
gwFV 4.4140 rwFV4.5140

roFV4.7190
LB105.3290
LB305.3760

CD
0.3320

(d) DGP COEF-SINE

2 3 4 5 6

roFV 3.7730
LB10 3.9940
LB30 4.0690
rwFV 4.4560 gwFV4.4730

bCV5.0420
hbCV5.0690
rCV5.1240

CD
0.3320

(e) DGP COEF-JUMP

3 4 5 6 7

hbCV 3.9230
bCV 3.9370

gwFV 4.3390
rCV 4.3460 rwFV4.4340

roFV4.4500
LB305.0240
LB105.5470

CD
0.3320

(f) DGP VOLA-EXP

Figure 2: Critical difference (CD) plots for selected data generating processes (DGP) and the linear
regression model. The plots display averaged ranks of mean squared estimate errors. Lower ranks indicate lower
estimate errors, i.e., better estimation of the out-of-sample error. Horizontal bars connect validation schemes for
which the average rank difference is statistically not significant at the 5% level (post-hoc Nemenyi test).
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Figure 3: Critical difference (CD) plots for selected data generating processes (DGP) and the random
forest regression model. Compare Figure 2 for a detailed description.

(BASE-AR and BASE-NOISE ), cross-validation schemes clearly achieve the lowest mean squared

error values: For the example of the linear regression model, randomized cross-validation (rCV )

and modifications (bCV and hbCV ) achieve mean squared errors of 0.0311 and 0.0317, respectively,

while the best forward-validation method, growing-window forward-validation (gwFW ), achieves

a value of 0.0351. Differences in squared error ranks between randomized cross-validation and its

blocked modifications are not statistically significant.

Adding a time-varying mean – breakdown of random cross-validation: When adding a time-varying

mean that evolves according to a random walk or a jump process (DGP MEAN-RW and MEAN-

JUMP, respectively), we observe that now randomized cross-validation performs worst: Looking at

the average ranks in Figures 2b and 3b, we find that random cross-validation achieves an average
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Figure 4: Critical difference (CD) plots for selected data generating processes (DGP) and the feed-
forward neural network regression model. Compare Figure 2 for a detailed description.
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Figure 5: Critical difference (CD) plots for all perturbed data generating processes (DGP). Perturbed
DGP refer to all DGP but BASE-AR and BASE-NOISE. Compare Figure 2 for a detailed description.

rank of only roughly 6, whereas all other validation schemes (including last-block schemes) come

out at average ranks well below 5. With average ranks close to 3.9, blocked forms of cross-validation

are least affected by the time-varying mean. Regarding mean squared errors, we make very similar

observations also for the DGP MEAN-RW (compare Table 2).

Adding time-varying coefficients – advantage of forward-validation: Next, we consider DGPs with

time-evolving coefficients, which we further divide into non-periodic (COEF-LIN, COEF-EXP,

COEF-RW and COEF-JUMP) and periodic parameter curves (COEF-SINE ).

For non-periodic parameter curves, we make the following observations: First, random cross-

validation is the worst cross-validation method in terms of mean squared error. For the example

of random forest regression and linearly decaying coefficients (COEF-LIN ), it achieves a MSEL̂

of 0.1764, which is considerably higher than for blocked cross-validation (0.1539). Second, for all

of these DGP and across models, we observe that forward-validation schemes are able to achieve

a better MSEL̂ than cross-validation schemes. We find that differences in average ranks between

cross-validation and forward-validation methods are statistically significant. Third, the inferior-

ity of last-block validation observed in the baseline cases is no longer given: For the example of
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linearly decaying regression coefficients (DGP COEF-LIN ), last-block validation with 30 percent

hold-out data and the linear model achieves a MSEL̂ of 0.0875. The best forward-validation scheme

performs only slightly better with an MSEL̂ of 0.0850.

For periodic coefficient curves (DGP COEF-SINE ), this picture is reversed: The average ranking

of validation schemes (Figures 2d, 3d and 4d) and the MSEL̂ (Table 2) are similar to those of the

globally stationary baseline case (DGP BASE-AR): Cross-validation schemes yield lower MSEL̂

values than both last-block and forward-validation schemes.

When considering an exponentially decaying volatility of the process (DGP VOLA-EXP, Figures 2f,

3f and 4f), we observe that the two blocked variants of cross-validation (namely, hCV and hbCV )

yield the lowest average ranks, independent of the model considered. Random cross-validation leads

to a statistically significantly higher average rank. The best forward-validation scheme is growing-

window forward-validation (gwFV ), followed by either rolling-origin or rolling-window forward-

validation. Differences between the different forward-validation schemes and to blocked cross-

validation schemes are not found to be statistically significant. We obtain similar conclusions from

the respective MSEL̂ values (Table 2).

Turning to a process with volatility jumps (DGP VOLA-JUMP), we find that random cross-

validation yields MSEL̂ values very similar to those of blocked cross-validation. Also, forward-

validation yields higher MSEL̂ values than cross-validation, independent of the actual scheme

used. In most settings with time-dependent volatility, we find that last-block schemes perform

worse than cross- or forward-validation.

Differences between machine learning models: To compare validation schemes across models, Fig-

ure 5 shows critical difference plots for results from all perturbed DGP and different models. We

observe that the ranking of validation schemes is nearly identical for the linear regression and neu-

ral network models: Forward-validation schemes lead the ranking, with the rolling-origin scheme

achieving the highest average rank. Next are blocked cross-validation schemes and last-block valida-

tion with 30 percent validation data. With considerable distance, random cross-validation achieves

the last rank. For the random forest model, the ranking is similar with one exception: Rolling-

window forward-validation ranks lower than with the other models. We make similar observations

in the detailed critical difference plot for the random forest model (e.g., for the DGP COEF-JUMP,

Figure 3e).

Comparison to the classification setting: Next, we compare results from the regression case to those

of the classification case (compare Table 5 as well as Figures 10 and 11 in the Appendix), while

keeping the strengths of stationarity perturbations at the same level as before. In general, we

find that differences between validation schemes are less pronounced in the classification setting.

22



Consider the example of linearly decaying autoregression coefficients (DGP COEF-LIN ), where

cross-validation and forward-validation achieve similar mean squared errors across models (Table

5). With a maximum difference in average ranks of 0.38, validation schemes perform very similarly

(compare Figure 10c). In comparison, we find rank differences of 2.52 for the regression setup. Also,

we observe that the previously observed disadvantage of random cross-validation over its blocked

modifications with non-periodic dynamics is not marked, as only relatively small differences in

mean squared error can be observed. Overall, a non-stationary perturbation of the process affects

the binarized target variable less than a continuous one. This leads to smaller differences between

validation schemes in the classification setting, which are most apparent in the relative performance

difference between random and blocked cross-validation.

4.2. An interpretation in terms of an approximation of the prediction error

To gain an intuition for these results, we now consider an approximation of the prediction error for

an AR(1) model with time-varying coefficient ϕ(u) and time-varying variance σ(u). In a simplified

regression setting, the model is assumed to be trained on data from the rescaled-time segment[
ut − bT

2 , ut + bT
2

]
and validated with respect to the locally stationary process at time uv. The

prediction error, expressed in terms of the R2 score, can be approximated as

LR2 ≈ ϕ(uv)
2︸ ︷︷ ︸

unperturbed score

−
(
ϕ(uv)− ϕ(ut) +

b2T
24
µ(ut)

)2

︸ ︷︷ ︸
bias induced by process evolution

− 1

bTT

(
1− ϕ(ut)

2
)

︸ ︷︷ ︸
estimation error

. (17)

The derivation of this result can be found in Appendix A, and µ(ut) is a term that depends on second

derivatives of the local autocovariance function of the process with respect to time, evaluated at ut.

This approximation allows us to identify the major drivers of the prediction error: The first term

is the maximum achievable R2 score that would asymptotically be obtained in the unperturbed

case (i.e., for ϕ(u) and σ(u) constant). The second driver is a bias term that reduces the maximum

score. It is due to the fact that the model is fit to a different process than it is validated on,

and depends on the difference in autoregression coefficients at times uv and ut. The further away

validation data is from training data, the larger this term is likely to become if the process dynamics

is non-periodic. However, the evolution-induced bias does not depend on the sample size T . The

third term further decreases the maximum score by an estimation error that decreases with the

available sample size T .

To further illustrate generalization abilities of different models, Figure 6 compares average empiri-

cal prediction errors from the three investigated models for varying sample sizes and different rates

α of a linear decay. The dependence of the prediction score on sample size T and decay rate α
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Figure 6: Generalization ability of different models. This plot shows the out-of-sample prediction score of the
linear, neural network and random forest regression models, expressed in terms of the mean coefficient of determination
R2, for different sample sizes T . The decay rate α of the autoregression coefficient is varied from α = 0 (global
stationarity) to α = 0.2. Results are calculated from 1000 time series, each generated with randomly chosen initial
autoregression coefficients.

agrees with the simplified approximation: The larger the sample size T , the closer the prediction

score gets to the highest possible value, which is composed of the unperturbed score and the bias

term (first and second term in equation 17). This behavior of the estimation error is described

by the factor 1
T in the last term of equation 17. Although this result is derived from estimating

an autoregressive model, we empirically recover similar learning curves for all models. While all

models achieve similar scores for large sample sizes, random forest regression profits most from an

increase in sample size, i.e., has the steepest learning curve. The bias term is driven by the decay

rate α, and reduces the maximum score, which is seen from the approximate parallel shift between

the black, blue and red sets of curves.

These results allow us to give a qualitative interpretation of the performance differences in vali-

dation schemes in terms of two drivers: First, forward-validation schemes train the model on less

observations than cross-validation schemes, which enters the estimation error via the 1
T -dependence.

On the one hand, the bias induced by the process’ evolution may be smaller for forward-validation

schemes, as validation samples are closer to training data.

Consider first cases where the process evolution is due to changes in the parameter curve ϕ(u):

For the non-periodic dynamics, the absolute difference in autoregression parameters |ϕ(uv)−ϕ(ut)|

tends to increase with the temporal difference |uv − ut|. Thus, forward-validation may be more

applicable as the temporal difference between training and validation samples is smaller, leading

to the reduced validation errors observed in case of decaying, random-walking or jumping au-

24



toregression coefficients. If, however, the underlying dynamics is periodic or the sample size is

small, cross-validation methods may be preferred due to their more efficient use of available data.

This leads to a smaller estimation error when compared to forward-validation, which offsets the

evolution-induced bias from the processes’ dynamics.

In cases where instead the variance σ(u) is time-dependent, the evolution-induced bias is affected

only through the term
b2T
24µ(ut). It does not explicitly depend on the rescaled time uv of the

validation sample, and thus leads to a similar bias contribution when comparing forward- and

cross-validation. Consequently, and as observed in the simulation study, mean squared estimate

errors from cross-validation are lower than from forward-validation.

4.3. Analysis of bias-variance decomposition

We proceed by splitting the mean squared error into a bias and a variance component given by

MSEL̂(V) = BIAS2
L̂(V)+V ARL̂(V), where bias and variance are given by BIASL̂(V) = ED[L̂−LPE ]

and V ARL̂(V) = ED[(L̂ −E[L̂])2], respectively. If the goal of applying a validation scheme is model

assessment, i.e., the estimation of the expected generalization error, a small bias is preferable (cf.,

Arlot and Celisse, 2010). If instead the goal is model selection, a smaller variance usually leads to a

better selection performance (cf., Arlot and Celisse, 2010; Cawley and Talbot, 2010): An estimator

of model performance with large, but constant bias still works well in terms of selecting the best

model; a large variance of the estimator however may lead to an “overfitting in model selection”

(Cawley and Talbot, 2010). We therefore seek to understand whether differences in mean squared

estimator performance are dominated by differences in bias or variance.

First, we consider the quotient between squared bias and variance, i.e., the fraction BIASL̂
2/V ARL̂,

to determine the main driver of our results. Results for the linear regression model are presented

in Panel A of Table 3; results were found to by fairly independent of the actual model. We observe

that in most cases, only a negligible part of the mean squared estimate error can be attributed to

the bias term. Exceptions are the DGP MEAN-JUMP, MEAN-RW and LIN-DECAY, for which

squared bias and variance are of a similar magnitude.

Next, we analyze the bias component (Panel B of Table 3), which is interpreted as follows: A

positive sign of the bias indicates that the error estimated by the validation scheme is larger than

the true out-of-sample generalization error, i.e., the error is overestimated, and vice versa. We find a

positive bias for the globally stationary base case (BASE-AR), which is consistent with expectation,

as errors from cross-validation folds are based on a model that is trained on less observations than

the final model (Arlot and Celisse, 2010, p. 68). When stationarity is perturbed by time-dependent

parameters, the sign of the bias varies with both the type of DGP and the employed validation

scheme. The DGP COEF-LIN presents one exception as we find that the bias is always negative.
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DGP VLB10 VLB30 VrCV VbCV VhbCV VroFV VrwFV VgwFV

Panel A BIASL̂(V)
2/V ARL̂(V)

BASE-AR 0.0066 0.0001 0.0004 0.0113 0.0114 0.0013 0.0541 0.0440
MEAN-JUMP 0.0050 0.0045 0.6701 0.0727 0.0711 0.0000 0.0348 0.0110
MEAN-RW 0.0007 0.0011 0.6590 0.0661 0.0645 0.0001 0.0239 0.0061
COEF-LIN 0.0601 0.3185 1.1646 1.0864 1.0860 0.3420 0.4948 0.5116
COEF-SIN 0.0010 0.0022 0.0185 0.0003 0.0003 0.0016 0.0082 0.0061
COEF-JUMP 0.0008 0.0013 0.0213 0.0000 0.0000 0.0009 0.0002 0.0010
COEF-RW 0.0010 0.0009 0.0438 0.0003 0.0003 0.0009 0.0006 0.0001
VOLA-EXP 0.0015 0.0090 0.0130 0.0029 0.0028 0.0045 0.0048 0.0041
VOLA-JUMP 0.0024 0.0013 0.0011 0.0118 0.0118 0.0015 0.0465 0.0379

Panel B BIASL̂(V) × 102

BASE-AR 0.2389 0.0161 0.0365 0.1885 0.1889 0.0734 0.4271 0.3848
MEAN-JUMP -0.7403 -0.8595 -10.2230 -2.7696 -2.7379 -0.0438 -1.9356 -1.0950
MEAN-RW -0.2650 -0.4326 -9.5661 -2.4556 -2.4251 0.0916 -1.4703 -0.7521
COEF-LIN -0.8201 -1.4548 -3.1949 -2.9516 -2.9511 -1.4724 -1.7645 -1.7837
COEF-SIN 0.2198 -0.3090 -0.7104 0.0928 0.0950 -0.2292 0.4959 0.4279
COEF-JUMP 0.2381 -0.3568 -1.9334 0.0677 0.0735 -0.2837 0.1556 0.3541
COEF-RW 0.3099 -0.3595 -3.3082 -0.2675 -0.2574 -0.3338 -0.3198 0.0915
VOLA-EXP 0.1280 -0.2318 -0.2350 -0.1030 -0.1024 -0.1452 0.1447 0.1321
VOLA-JUMP 0.1741 0.0897 0.0679 0.2283 0.2285 0.0937 0.4875 0.4405

Panel C V ARL̂(V) × 102

BASE-AR 0.0869 0.0461 0.0312 0.0314 0.0314 0.0415 0.0337 0.0337
MEAN-JUMP 1.0853 1.6325 1.5596 1.0553 1.0545 1.5268 1.0772 1.0876
MEAN-RW 0.9800 1.6435 1.3885 0.9128 0.9119 1.3502 0.9062 0.9283
COEF-LIN 0.1120 0.0664 0.0877 0.0802 0.0802 0.0634 0.0629 0.0622
COEF-SIN 0.4869 0.4272 0.2721 0.2649 0.2649 0.3384 0.2992 0.2995
COEF-JUMP 0.7273 0.9766 1.7562 1.6213 1.6215 0.8945 1.2565 1.2570
COEF-RW 0.9441 1.4329 2.4984 2.2427 2.2430 1.1965 1.6168 1.5829
VOLA-EXP 0.1110 0.0598 0.0424 0.0371 0.0371 0.0472 0.0433 0.0430
VOLA-JUMP 0.1263 0.0642 0.0439 0.0441 0.0441 0.0593 0.0511 0.0512

Table 3: Bias-variance decomposition. This table displays the bias-variance ratio BIASL̂(V)
2/V ARL̂(V) (Panel

A), the bias BIASL̂(V) (Panel B) and the variance V ARL̂(V) (Panel C) for the linear regression model. In total,
eight validation schemes are listed: Last block evaluation using the last 10 percent (LB10 ) or 30 percent of the data
(LB30 ); cross-validation in the random variant (rCV ) as well as the blocked (bCV ) and h-blocked form (hbCV );
forward-validation in rolling-origin (roFV ), rolling-window (rwFV ) and growing-window (gwFV ) variants.

This can be explained by the fact that by construction, autoregression coefficients decline over

time, which in turn leads to a decreasing predictability (i.e., the amount of autocorrelation the

model can exploit). Hence, the out-of-sample error is always larger than any error calculated in-

sample. For more complicated time-dependencies of the autocorrelation coefficients, the achievable

predictability varies non-monotonically, which leads to the observed changes in bias sign. For all but

one perturbed cases, random cross-validation accumulates the bias with the largest magnitude and

with a negative sign, i.e., underestimates the out-of-sample generalization error. When we compare

the bias magnitude magnitude for blocked cross-validation variants with forward-validation, we find
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no clear prevalence of schemes.

Finally, we consider the variance of the validation scheme (Panel C of Table 3), which in most cases

contributes the largest part of the mean squared estimate error. Consequently, differences between

validation schemes resemble those observed from the mean squared error. If we further look at cases

where the mean squared error is to a large extent driven by the bias component, specifically at

the DGP MEAN-JUMP, MEAN-RW and COEF-LIN, we find that previous conclusions also hold

true regarding the variance term: Among all cross-validation methods, random cross-validation is

affected most severely when global stationarity is perturbed. Also, we find that when non-periodic

changes of the autoregression coefficients are present, variance of forward-validation methods are

mostly smaller when compared to cross-validation methods.

4.4. Influence of perturbation strength and number of observations

In the following, we analyze the performance of validation schemes for increasing perturbation

strengths, and focus on the example of linearly decaying autoregression coefficients for the sake

of interpretability. We vary the rate of decay α in the interval [0, 0.3], where α = 0 corresponds

to a globally stationary process, and a value of α = 0.3 means that autoregression coefficients at

time u = 1 are reduced to 70% of their initial values. For every parameter setting, we run 1000

replications with a sample size of T = 10000.

Results for the linear regression model are given in Figure 7a: The left subplot displays the mean

squared error MSEL̂(V) of different validation schemes, together with the bootstrapped estimates

of the 2.5%- and 97.5%-quantiles. The smaller right plots visualize BIASL̂(V) and V ARL̂(V) com-

ponents separately. We find that relative performance differences in terms of the mean squared

error can be divided into three regimes, depending on the decay rate α: For small α, validation

schemes other than last-block validation yield a similar mean squared error. As α increases, mean

squared errors for all validation schemes increase, however at different rates. The mean squared

error of random cross-validation (rCV ) rises fastest, followed by by the blocked variant (bCV ). At a

critical decay rate α ≈ 0.06, cross-validation and forward-validation methods yield clearly different

values of MSEL̂(V). In this central regime, forward-validation methods (gwFV and roFW ) have the

lowest mean squared error. As α increases to values above 0.18, last-block validation is the scheme

with the lowest error. In terms of the variance, we observe a very similar picture. The magnitude

of bias on the other hand increases almost linearly at different rates, with cross-validation again

being affected most severely.

When considering the classification case (Figure 7b), we obtain a qualitatively very similar picture.

However, the critical perturbation strength is substantially larger (α ≈ 0.15 compared to α ≈ 0.06

found in the regression setting), and blocked as well as randomized cross-validation schemes yield
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(b) Logistic regression model used for classification

Figure 7: Performance of validation schemes for increasing perturbation strengths. The plots display main
performance metrics for the DGP COEF-LIN and different models when the strength of stationarity perturbation is
increased. The strength of stationarity perturbation is expressed in terms of the linear decay rate α, where α = 0
corresponds to globally stationary data. For every setting of α, we run 1000 replications with a sample size of
T = 10000. The mean squared error MSEL̂(V) (left plots), the bias BIASL̂(V) (upper right plots) and the variance
V ARL̂(V) (lower right plots) are used as performance metrics. For the mean squared error, filled areas show the
interval between bootstrapped 2.5%- and 97.5%-quantiles. Results for six validation schemes are shown: Last block
evaluation using the last 10 percent of the data (LB10 ); cross-validation in the random variant (rCV ) as well as the
blocked (bCV ) form; forward-validation in rolling-origin (roFV ) and growing-window (gwFV ) variants.
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similar performances. The use of a binary classification target may mediate some of the effects of

the stationarity perturbation and thus increase robustness, as only the directional accuracy and

not the magnitude of the prediction error is evaluated.

To further analyze the influence of sample size, we vary the time series length T from T = 250

to T = 50000 (Figure 8). The linear decay rate of autoregression coefficients is fixed at α = 0.1,

i.e., the autoregression coefficients at u = 0 have a value of 90% of their initial value at u = 1.

Since we formulate this dynamics in rescaled time, increasing the sample size results in more and

more observations in the vicinity of any locally stationary process at time u0; the strength of the

perturbation over the unit rescaled-time interval stays however unchanged.

For larger samples sizes, we recover the result that forward-validation schemes perform better, i.e.,

achieve lower mean squared error values than cross-validation. Asymptotically, the estimation error

term in equation 17 tends towards zero as it depends on 1
T . Despite different generalization abilities,

we find little differences in this behavior between linear regression and random forest regression

(Subfigures 8a and 8b). The estimate bias induced by the process’ evolution dominates, and the

mean squared estimate error approaches a constant as this bias term is approximately independent

of sample size. For large sample sizes, last-block validation has the lowest MSEL̂(V): The evolution-

induced bias is lowest, as observations from the last block that are used for validation are closest in

time to out-of-sample observations, and estimation errors are negligible. However, for samples sizes

smaller than 2000, cross-validation and especially blocked cross-validation start to rank highest

among all validation methods: Cross-validation gains in performance as the estimation error term

becomes more important than the bias induced by the processes’ evolution. In this regime, the

mean squared prediction error is largely driven by the 1
T -dependence of the estimation error. When

comparing these results to those obtained from using a classification target (Figure 9), we obtain

a qualitatively similar picture. However, the perturbation strength was set to a higher value to

recover this similarity. Further, growing-window validation does not perform considerably worse

than other validation schemes for small sample sizes in the classification setting.

4.5. Application example: Machine learning for statistical arbitrage

To analyze how results from synthetic time series relate to real-world data sets, we now present

results from a large-scale simulation study using financial market data from S&P 500 constituents

(compare Section 3.1.2). The machine learning models predict whether a certain stock under- or

overperforms when compared to the general market. Results are obtained from 1000 moving block

bootstrap replications with randomly selected stock universes. Table 4 lists main performance

indicators.
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Figure 8: Influence of sample size on validation scheme performance in the regression setting. These
plots show the performance of different validation schemes for samples sizes that change from 250 to 50000, while
the linear decay rate of autoregression coefficients is held constant at α = 0.1. We use a linear regression as well as
a random forest regression model to perform 1000 replications. Plots show the mean squared error MSEL̂(V), the
bias BIASL̂(V) and the variance V ARL̂(V) of the estimate error. For the mean squared error, filled areas show the
interval between bootstrapped 2.5%- and 97.5%-quantiles. Results for six validation schemes are shown: Last block
evaluation using the last 10 percent of the data (LB10 ); cross-validation in the random variant (rCV ) as well as the
blocked (bCV ) form; forward-validation in rolling-origin (roFV ) and growing-window (gwFV ) variants.
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Figure 9: Influence of sample size on validation scheme performance in the classification setting. These
plots show the performance of different validation schemes for samples sizes that change from 250 to 100000, while
the linear decay rate of autoregression coefficients is held constant at α = 0.25. We use a logistic regression model
to perform 1000 replications. Subplots show the mean squared error MSEL̂(V), the bias BIASL̂(V) and the variance
V ARL̂(V) of the estimate error. For the mean squared error, filled areas show the interval between bootstrapped 2.5%-
and 97.5%-quantiles. Results for four validation schemes are shown: Last block evaluation using the last 10 percent
of the data (LB10 ); random cross-validation (rCV ); forward-validation in rolling-origin (roFV ) and growing-window
(gwFV ) variants.

We observe that, in terms of the mean squared error MSEL̂(V) (Panel A), forward-validation

schemes outperform cross-validation and last-block schemes. Across models, random cross-validation

(rCV ) yields the largest mean squared error, while rolling-origin forward-validation (roFV ) achieves

the lowest values. Looking at the respective bias components (Panel B), we find that randomized

cross-validation also accumulates the largest bias. Bias signs are generally negative, i.e., all vali-

dation schemes underestimate the out-of-sample error and overestimate the accuracy. Last-block

and forward-validation schemes achieve the lowest bias magnitudes. Regarding the variance com-

ponent V ARL̂(V), last-block validation with 10 percent validation data (LB10 ) has the highest

values. Randomized cross-validation is similar in variance when compared to its blocked variants.

Rolling-origin forward-validation achieves the lowest variance values, while other forward-validation

variants are similar to cross-validation. Hence, differences in mean squared estimate error between

cross- and forward-validation schemes are to a larger extent driven by differences in bias, which is

qualitatively similar to observations from the DGP COEF-LIN.

This exemplary study illustrates the importance of accounting for time-evolving dynamics in the

selection of suitable validation schemes for time-series data. We find that real-world performance

differences between validation schemes qualitatively resemble those found with synthetic data when
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Model VLB10 VLB30 VrCV VbCV VhbCV VroFV VrwFV VgwFV

Panel A MSEL̂(V) × 104

LR 0.4689 0.3943 0.5776 0.4479 0.4473 0.3353 0.3863 0.3939
RF 0.4185 0.3320 1.0738 0.4616 0.4577 0.2797 0.3322 0.3484
NN 0.5019 0.3951 0.5201 0.4325 0.4392 0.3258 0.3763 0.3826

Panel B BIASL̂(V) × 102

LR -0.1700 -0.2117 -0.5020 -0.3013 -0.3008 -0.1941 -0.1879 -0.2468
RF -0.1863 -0.1693 -0.8872 -0.4113 -0.4074 -0.1656 -0.1928 -0.2747
NN -0.1501 -0.1885 -0.4318 -0.2748 -0.2766 -0.1764 -0.1694 -0.2255

Panel C V ARL̂(V) × 104

LR 0.4404 0.3498 0.3259 0.3574 0.3572 0.2979 0.3514 0.3333
RF 0.3842 0.3037 0.2870 0.2927 0.2920 0.2526 0.2953 0.2733
NN 0.4799 0.3599 0.3340 0.3573 0.3631 0.2950 0.3479 0.3321

Table 4: Performance of validation schemes in a real-world stock performance classification task. Panel
A shows the mean squared estimate error MSEL̂(V). Panels B and C show the bias BIASL̂(V) and variance V ARL̂(V)
components, respectively. 1000 Monte Carlo replications were used. The maximum (minimum) values of each row in
terms of magnitude are shown in bold (underlined). In total, eight validation schemes are listed: Last block validation
using the last 10 percent (LB10 ) or 30 percent of the data (LB30 ); cross-validation in the standard, randomized
variant (rCV ) as well as the blocked (bCV ) and h-blocked form (hbCV ); forward-validation in rolling-origin (roFV ),
rolling-window (rwFV ) and growing-window (gwFV ) variants.

introducing non-periodic changes of autoregression coefficients. The observed performance differ-

ences in this application example are substantial: For instance, the difference between the root

mean square error of random cross-validation and rolling-origin validation amounts to 0.5074%.

This error is comparably large, as typical binary balanced accuracy scores for stock prediction

tasks are only in the order of 54% (Krauss et al., 2017). Generally, the actual dynamics govern-

ing the non-stationarity of financial time series data are much more complex than the simplified

examples considered in the simulation study, and results are therefore not directly comparable.

Nevertheless, results from synthetic data with time-evolving dynamics may help with the selection

of validation schemes for real-world applications.

5. Conclusion

This paper comprehensively examines the performance of common cross- and forward-validation

methods for model selection and model assessment. In the proposed Monte Carlo study design,

we compare the performances using synthetic data from a broad selection of locally stationary

processes and a statistical arbitrage application. These data sets have in common that the data-

generating process evolves over time, which is a realistic assumption about any real-world process,

but unfortunately perturbs global stationarity.

Generally, the choice of a suitable validation scheme depends on a number of factors, among
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them the sample size and model used. This is further complicated when considering time-evolving

processes, as the type of dynamics plays a major role and already small perturbations of stationarity

may derange validation methods to a larger extent. Nevertheless, we can derive the following

guidelines from our experiments: Using cross-validation for time-series applications comes at a

great risk. While theoretically applicable, we find that random cross-validation often is associated

with the largest bias and variance when compared to all other validation schemes. In most cases,

blocked variants of cross-validation have a similar or better performance, and should therefore be

preferred if cross-validation is to be used. If global stationarity is perturbed by non-periodic changes

in autoregression coefficients, we find that forward-validation may be preferred over cross-validation.

Within forward-validation schemes, we find that rolling-origin and growing-window schemes often

achieve the best performance. A closer look on the effect of the perturbation strength reveals

that there exist three performance regimes: For small perturbations, cross- and forward-validation

methods perform similarly. For intermediate perturbation strengths, forward-validation performs

better. For still higher perturbation strengths, last-block validation performs best.

With the help of simplified expression for the prediction error of a time-varying AR(1) process, we

interpret these results in terms of a trade-off between the bias induced by the slow evolution of the

process and the estimation error that depends on the amount of a split’s training data.

We demonstrate the practical significance of these results with a large-scale Monte Carlo study

that performs replications of a statistical arbitrage problem on S&P 500 stock data. Consistent

with results from synthetic time series with non-periodic dynamics, we find that forward-validation

schemes outperform cross-validation schemes both in terms of bias and variance. Compared to

typical accuracies from statistical arbitrage models, differences in the performance of validation

schemes are substantial.

33



References

Allen, D.M., 1974. The relationship between variable selection and data agumentation and a method

for prediction. Technometrics 16, 125–127.

Andreou, P.C., Charalambous, C., Martzoukos, S.H., 2008. Pricing and trading European op-

tions by combining artificial neural networks and parametric models with implied parameters.

European Journal of Operational Research 185, 1415–1433.

Arlot, S., Celisse, A., 2010. A survey of cross-validation procedures for model selection. Statistics

Surveys 4, 40–79.

Armstrong, J.S., Grohman, M.C., 1972. A comparative study of methods for long-range market

forecasting. Management Science 19, 211–221.

Baliyan, A., Gaurav, K., Mishra, S.K., 2015. A review of short term load forecasting using artificial

neural network models. Procedia Computer Science 48, 121–125.

Beheshti-Kashi, S., Karimi, H.R., Thoben, K.D., Lütjen, M., Teucke, M., 2015. A survey on retail

sales forecasting and prediction in fashion markets. Systems Science & Control Engineering 3,

154–161.

Bergmeir, C., Benitez, J.M., 2012. On the use of cross-validation for time series predictor evaluation.

Information Sciences 191, 192–213.

Bergmeir, C., Costantini, M., Benitez, J.M., 2014. On the usefulness of cross-validation for direc-

tional forecast evaluation. Computational Statistics & Data Analysis 76, 132–143.

Bergmeir, C., Hyndman, R.J., Koo, B., 2018. A note on the validity of cross-validation for evaluating

autoregressive time series prediction. Computational Statistics & Data Analysis 120, 70–83.

Breiman, L., 2001. Random forests. Machine Learning 45, 5–32.

Burman, P., 1989. A comparative study of ordinary cross-validation, v-fold cross-validation and

the repeated learning-testing methods. Biometrika 76, 503–514.

Burman, P., Chow, E., Nolan, D., 1994. A cross-validatory method for dependent data. Biometrika

81, 351–358.

Callen, J.L., Kwan, C.C.Y., Yip, P.C.Y., Yuan, Y., 1996. Neural network forecasting of quarterly

accounting earnings. International Journal of Forecasting 12, 475–482.

34



Cawley, G.C., Talbot, N.L.C., 2010. On over-fitting in model selection and subsequent selection

bias in performance evaluation. Journal of Machine Learning Research 11, 2079–2107.
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Appendix A Approximation of the expected generalization error

The purpose of this section is to derive an approximation of the expected generalization error from

fitting an autoregressive process to an interval of data generated from a time-varying autoregressive

process. The expected generalization error is estimated as the out-of-sample error outside of this

interval. Consider the first-order time-varying locally stationary autoregressive process with zero

mean given in rescaled time u by

Xt,T = ϕ(u)Xt−1,T + σ(u)εt, (18)

which has the local autocovariance function c(u, j) = σ(u)2

1−ϕ(u)2ϕ(u)|j|. In the following, we assume

that we fit a stationary AR(1) process and obtain a parameter estimate ϕ̂ on observations from

the rescaled-time segment
[
ut − bT

2 , ut + bT
2

]
that constitues the training data D. We denote this

trained model as f̂ . First, we derive the generalization error LD under the quadratic loss function

at some validation time uv /∈
[
ut − bT

2 , ut + bT
2

]
, assuming that the validation sample follows the

local stationary approximation of the process X̃t(uv) at time uv:

LD = E(X,Y )∼X̃t(uv)

[
(Y − f̂(X))2 | D

]
= E

[
(ϕ(uv)X + σ(uv)ε− ϕ̂X)2 | D

]
= (ϕ(uv)− ϕ̂)2 E

[
X2
]

+ 2 (ϕ(uv)− ϕ̂)σ(uv)E [Xε] + σ(uv)
2E
[
ε2
]

= (ϕ(uv)− ϕ̂)2 σ(uv)2

1−ϕ(uv)2 + σ(uv)
2,

(19)

Therein, we follow our convention of a time-delay embedding for target and feature values, i.e.,

Y = Xt and X = Xt−1, respectively. Calculating the expected generalization error by additionally

averaging over all possible realizations of the training data D yields an expression that is a function

of the expected parameter value E[ϕ̂(ut)] and its variance V ar[ϕ̂(ut)]:

L = ED [LG]

=
(

(ϕ(uv)− E[ϕ̂(ut)])
2 + V ar[ϕ̂(ut)]

)
σ(uv)2

1−ϕ(uv)2 + σ(uv)
2

(20)

To further calculate the prediction error, we use the following approximations of E[ϕ̂(ut)] and

V ar[ϕ̂(ut)] from the segment with center ut in the limit b2T + 1
bTT
→ 0 (Dahlhaus, 2012, p. 359):8

8In the given form of the approximation, we assume that a trivial data taper h(x) = 1 is used, simplifying the

expression as dK =
∫ 1
0 h

2(x)(x−0.5)2dx∫ 1
0 h

2(x)dx
= 1

12
and vK =

∫ 1
0 h

4(x)dx

[
∫ 1
0 h

2(x)dx]2
= 1.
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E[ϕ̂(ut)] = ϕ(ut)−
b2T
24
µ(ut) + o

(
b2T
)

(21)

V ar[ϕ̂(ut)] =
1

bTT
σ(ut)

2R(ut)
−1 + o

(
1

bTT

)
(22)

In these equations, the shorthand notations R(u) = c(u, 0) = σ(u)2

1−ϕ(u)2 , r(u) = c(u, 1) = R(u)ϕ(u)

and

µ(ut) = R(ut)
−1
[(

∂2

∂u2
R(u)

)
ϕ(ut) +

(
∂2

∂u2
r(u)

)]
u=ut

(23)

are used. In the following, we suppose that Assumptions 2.1 from Dahlhaus and Giraitis (1998) are

fulfilled. Specifically, we assume that the third derivatives of the variance |δ3σ2(u)/∂u3| and of the

autoregression parameter |∂3ϕ(u)/∂u3| are uniformly bounded for u ∈ [0, 1]. Further, we assume

that |ϕ(u)| < 1 ∀ u ∈ [0, 1] and that P (Xt,T = 0) = 0 ∀ t ∈ [1, T ]. These assumptions hold for

most data generating processes studied in the simulation study, for example linear or exponential

decays of the autoregression parameters or the variance. As such, this approximation yields an

appropriate framework to study the general form of the generalization error under time-dependent

parameter curves, and may provide an intuitive interpretation of results. Substitution of above

approximations into equation 20 yields

L =

[(
ϕ(uv)− ϕ(ut) +

b2T
24µ(ut)

)2
+ 1

bTT
σ(ut)2

R(ut)

]
R(uv) + σ(uv)

2 + o
(
b4T
)

+ o
(

1
bTT

)
. (24)

Dividing by the variance at rescaled time uv and subtracting from 1 yields the expected general-

ization error in terms of the R2 score:

LR2
= ϕ(uv)

2 −
(
ϕ(uv)− ϕ(ut) +

b2T
24µ(ut)

)2
− 1

bTT

(
1− ϕ(ut)

2
)

+ o
(
b4T
)

+ o
(

1
bTT

)
. (25)
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Appendix B Empirical results for classification models

MSEL̂(V) × 102

Model DGP VLB10 VLB30 VrCV VbCV VhbCV VroFV VrwFV VgwFV

LR BASE-AR 0.0251 0.0134 0.0093 0.0092 0.0092 0.0125 0.0107 0.0108
BASE-NOISE 0.0270 0.0140 0.0095 0.0095 0.0095 0.0132 0.0106 0.0108
MEAN-JUMP 0.0428 0.0415 0.0398 0.0372 0.0371 0.0384 0.0391 0.0360
MEAN-RW 0.0471 0.0449 0.0379 0.0356 0.0356 0.0416 0.0368 0.0350
COEF-LIN 0.0277 0.0143 0.0136 0.0135 0.0136 0.0138 0.0127 0.0125
COEF-EXP 0.0268 0.0140 0.0118 0.0118 0.0118 0.0129 0.0115 0.0114
COEF-SINE 0.0358 0.0240 0.0164 0.0165 0.0165 0.0208 0.0182 0.0178
COEF-JUMP 0.0567 0.0532 0.0792 0.0791 0.0791 0.0492 0.0653 0.0650
COEF-RW 0.0666 0.0711 0.1082 0.1083 0.1082 0.0643 0.0863 0.0854
VOLA-EXP 0.0266 0.0153 0.0103 0.0102 0.0102 0.0136 0.0115 0.0115
VOLA-JUMP 0.0267 0.0139 0.0094 0.0095 0.0095 0.0129 0.0110 0.0109

RF BASE-AR 0.0252 0.0136 0.0096 0.0095 0.0095 0.0122 0.0126 0.0109
BASE-NOISE 0.0268 0.0138 0.0097 0.0099 0.0098 0.0125 0.0122 0.0109
MEAN-JUMP 0.0803 0.0781 0.0736 0.0682 0.0681 0.0721 0.0642 0.0636
MEAN-RW 0.0689 0.0846 0.0627 0.0573 0.0573 0.0735 0.0550 0.0543
COEF-LIN 0.0262 0.0147 0.0124 0.0125 0.0125 0.0132 0.0137 0.0121
COEF-EXP 0.0263 0.0139 0.0123 0.0121 0.0122 0.0125 0.0136 0.0117
COEF-SINE 0.0373 0.0241 0.0158 0.0159 0.0159 0.0206 0.0195 0.0178
COEF-JUMP 0.0501 0.0530 0.0760 0.0760 0.0761 0.0473 0.0645 0.0634
COEF-RW 0.0626 0.0683 0.1028 0.1028 0.1029 0.0608 0.0813 0.0798
VOLA-EXP 0.0266 0.0178 0.0121 0.0117 0.0116 0.0165 0.0130 0.0122
VOLA-JUMP 0.0292 0.0181 0.0098 0.0098 0.0099 0.0155 0.0131 0.0116

NN BASE-AR 0.0248 0.0129 0.0089 0.0090 0.0089 0.0118 0.0100 0.0099
BASE-NOISE 0.0240 0.0127 0.0089 0.0088 0.0089 0.0111 0.0103 0.0099
MEAN-JUMP 0.0458 0.0430 0.0376 0.0352 0.0353 0.0389 0.0364 0.0341
MEAN-RW 0.0431 0.0418 0.0326 0.0304 0.0305 0.0374 0.0314 0.0299
COEF-LIN 0.0259 0.0146 0.0135 0.0133 0.0133 0.0131 0.0127 0.0127
COEF-EXP 0.0269 0.0141 0.0132 0.0130 0.0130 0.0128 0.0123 0.0123
COEF-SINE 0.0347 0.0228 0.0153 0.0153 0.0154 0.0196 0.0178 0.0175
COEF-JUMP 0.0524 0.0566 0.0794 0.0795 0.0797 0.0494 0.0650 0.0654
COEF-RW 0.0674 0.0714 0.1067 0.1072 0.1077 0.0640 0.0821 0.0831
VOLA-EXP 0.0265 0.0140 0.0090 0.0093 0.0093 0.0121 0.0104 0.0102
VOLA-JUMP 0.0225 0.0141 0.0095 0.0096 0.0094 0.0115 0.0112 0.0108

Table 5: Comparison of mean squared estimate errors for the classification case. This table shows the
mean squared estimate error MSEL̂(V) for different validation schemes and different data generating processes (DGP),
multiplied by 100. Higher values indicate a larger deviation between the in-sample validation error estimate and the
true out-of-sample error. The maximum (minimum) values of each row are shown in bold (underlined). Results for
the logistic regression (LR), random forests (RF) and feed-forward neural network (NN) are shown separately. In
total, eight validation schemes are listed: Last block validation using the last 10 percent (LB10 ) or 30 percent of the
data (LB30 ); cross-validation in the randomized variant (rCV ) as well as the blocked (bCV ) and h-blocked form
(hbCV ); forward-validation in rolling-origin (roFV ), rolling-window (rwFV ) and growing-window (gwFV ) variants.
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Figure 10: Critical difference (CD) plots of selected data generating processes (DGP) with the logistic
regression classification model. Compare Figure 2 for a detailed description of the plots.
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Figure 11: Critical difference (CD) plots of selected data generating processes (DGP) with the random
forest classification model. Compare Figure 2 for a detailed description of the plots.
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Figure 12: Critical difference (CD) plots of selected data generating processes (DGP) with the random
forest classification model. Compare Figure 2 for a detailed description of the plots.
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